CAPER: Computerized Assessment of Psychosis Risk
CAPER:精神病风险的计算机化评估
基本信息
- 批准号:10794659
- 负责人:
- 金额:$ 2.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAmericanAttenuatedAutomobile DrivingBehavioralBiological MarkersClinicalCollaborationsComputing MethodologiesDetectionDeteriorationDiagnosisDimensionsEarly DiagnosisEarly InterventionEarly identificationFoundationsFrequenciesFunctional disorderGenerationsGoalsHuman ResourcesIndividualInternetIntervention TrialInterviewJointsLinkLongitudinal StudiesMachine LearningMeasuresMethodsModelingNeurobiologyOutcomeParticipantPatient Self-ReportPerformancePersonsPopulationPredictive ValuePrimary PreventionPsychopathologyPsychosesPublic HealthPublishingRecording of previous eventsResearchResearch PersonnelRiskRoleSample SizeSecondary PreventionSeveritiesSiteSpecificitySymptomsSystemTechniquesTest ResultTestingTrainingTranslatingUnited StatesWorkYouthclinical high risk for psychosisclinical practicecognitive testingcomputerizeddesignfollow-upfunctional declinefunctional outcomeshelp-seeking behaviorhigh riskhigh risk populationimprovedmachine learning classificationmachine learning methodneuralnew therapeutic targetnext generationonline deliverypreventpreventive interventionpsychosis riskpsychotic symptomsrecruitscreeningsocialtrait
项目摘要
Project Summary/Abstract
Research suggests that early identification of individuals at clinical high risk (CHR) for psychosis may be able
to improve illness course. Studies suggest that early identification of CHR using specialized interviews with
help-seeking individuals (with attenuated psychosis symptoms) is a useful approach. This work has two major
limitations: 1) interview methods have limited specificity as only 20% of CHR individuals convert to psychosis,
and 2) the expertise needed to make CHR diagnosis is only accessible in a few academic centers. We propose
to develop a new psychosis symptom domain sensitive (PSDS) battery, prioritizing tasks that show correlations
with the symptoms that define psychosis and are tied to the neurobiological systems and computational
mechanisms implicated in these symptoms. To promote accessibility, we utilize behavioral tasks that could be
administered over the internet; this will set the stage for later research testing widespread screening that would
identify those most in need of in-depth assessment. To reach that goal we first need determine which tasks are
effective for predicting illness course and how this strategy compares to published prediction methods. We
propose to recruit 500 CHR participants, 500 help-seeking individuals, and 500 healthy controls across 5 sites
with the following Aims: Aim 1A) To develop a psychosis risk calculator through the application of machine
learning (ML) methods to the measures from the PSDS battery. In determine an exploratory ML analysis, we will
the added value of combining the PSDS with self-report measures and historical predicators; Aim
1B) We will evaluate group differences on the risk calculator score and hypothesize that the risk calculator
score of the CHR group will differ from help-seeking and healthy controls. We further hypothesize that the risk
calculator score of the CHR converters will differ significantly from groups of CHR nonconverters, help-seeking
and healthy controls. The inclusion of a help-seeking group is critical for translating the risk-calculator into
clinical practice, where the goal is to differentiate those at greatest risk for psychosis from those with other
forms of psychopathology; Aim 1C): Evaluate how baseline PSDS performance relates to symptomatic
outcome 2 years later examining: 1) symptomatic worsening treated as a continuous variable, and 2)
conversion to psychosis. We hypothesize that the PSDS calculator: 1) will predict symptom course and, 2)
that the differences observed between converters and nonconverters will be larger on the PSDS calculator
than on the NAPLS calculator. Aim 2) Use ML methods, as above, to develop calculators that predict: 2A)
social, and, 2B) role function deterioration, both observed over two years. Because negative symptoms are
strongly linked t o functional outcome than positive symptoms, we predict that negative symptom
tasks will be the strongest predictor of functional decline in both domains.This project will provide
a next-generation CHR battery, tied to illness mechanisms and powered by cutting-edge computational
methods that can be used to facilitate the earliest possible detection of psychosis risk.
项目总结/摘要
研究表明,早期识别精神病临床高风险个体可能能够
改善病程。研究表明,通过专门采访来早期识别CHR
寻求帮助的个人(精神病症状减轻)是一个有用的方法。这项工作有两个主要内容
局限性:1)访谈方法的特异性有限,因为只有20%的精神病患者转变为精神病,
2)只有少数几个学术中心才能提供进行乳腺癌诊断所需的专业知识。我们提出
开发新的精神病症状领域敏感(PSDS)电池,优先考虑显示相关性的任务
精神病的症状与神经生物学系统和计算系统有关,
与这些症状有关的机制。为了促进可访问性,我们利用行为任务,
通过互联网管理;这将为以后的研究测试广泛的筛查奠定基础,
确定最需要深入评估的领域。为了达到这个目标,我们首先需要确定哪些任务是
预测疾病进程的有效性以及该策略与已发表的预测方法的比较。我们
拟在5个研究中心招募500名受试者、500名求助者和500名健康对照
目标1A)通过机器的应用开发精神病风险计算器
学习(ML)方法从PSDS电池的措施。在确定探索性ML分析时,我们将
将PSDS与自我报告措施和历史预测因素相结合的附加值;
1B)我们将评估风险计算器评分的组间差异,并假设风险计算器
抑郁症组的得分与求助者和健康对照组有差异。我们进一步假设,
转换者的计算器得分与非转换者的计算器得分显著不同,
健康的对照。包括一个寻求帮助的小组对于将风险计算器转化为
临床实践,其目标是区分那些患有精神病的风险最大的人与其他
精神病理学形式;目的1C):评价基线PSDS表现与症状性
2年后检查结果:1)症状恶化作为连续变量处理,2)
转化为精神病我们假设PSDS计算器:1)将预测症状过程,2)
在PSDS计算器上观察到的转换器和非转换器之间的差异将更大
在NAPLS计算器上。目标2)使用ML方法,如上所述,开发预测以下内容的计算器:2A)
社会,和,2B)角色功能恶化,都观察了两年。因为阴性症状是
与功能结局密切相关,我们预测阴性症状
任务将是这两个领域功能下降的最强预测因素。该项目将提供
下一代可充电电池,与疾病机制相关,由尖端的计算技术提供动力,
可用于促进尽早检测精神病风险的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LAUREN M ELLMAN其他文献
LAUREN M ELLMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LAUREN M ELLMAN', 18)}}的其他基金
CAPER: Computerized Assessment of Psychosis Risk Supplement
CAPER:精神病风险补充的计算机化评估
- 批准号:
10540475 - 财政年份:2020
- 资助金额:
$ 2.54万 - 项目类别:
CAPER: Computerized Assessment of Psychosis Risk
CAPER:精神病风险的计算机化评估
- 批准号:
10361304 - 财政年份:2020
- 资助金额:
$ 2.54万 - 项目类别:
CAPER: Computerized Assessment of Psychosis Risk
CAPER:精神病风险的计算机化评估
- 批准号:
10569011 - 财政年份:2020
- 资助金额:
$ 2.54万 - 项目类别:
CAPER: Computerized Assessment of Psychosis Risk
CAPER:精神病风险的计算机化评估
- 批准号:
9980111 - 财政年份:2020
- 资助金额:
$ 2.54万 - 项目类别:
Maternal Inflammation During Pregnancy: Clinical and Neurocognitive Outcomes in Adult Offspring
怀孕期间母体炎症:成年后代的临床和神经认知结果
- 批准号:
10600865 - 财政年份:2019
- 资助金额:
$ 2.54万 - 项目类别:
Maternal Inflammation During Pregnancy: Clinical and Neurocognitive Outcomes in Adult Offspring
怀孕期间母体炎症:成年后代的临床和神经认知结果
- 批准号:
10380812 - 财政年份:2019
- 资助金额:
$ 2.54万 - 项目类别:
1/3-Community Psychosis Risk Screening: An Instrument Development Study Supplement
1/3-社区精神病风险筛查:工具开发研究补充
- 批准号:
9675623 - 财政年份:2017
- 资助金额:
$ 2.54万 - 项目类别:
1/3 Community Psychosis Risk Screening: An Instrument Development Study
1/3 社区精神病风险筛查:仪器开发研究
- 批准号:
10203788 - 财政年份:2017
- 资助金额:
$ 2.54万 - 项目类别:
Fetal exposure to maternal stress and inflammation: Effects on neurodevelopment
胎儿暴露于母体压力和炎症:对神经发育的影响
- 批准号:
8297405 - 财政年份:2012
- 资助金额:
$ 2.54万 - 项目类别:
Fetal exposure to maternal stress and inflammation: Effects on neurodevelopment
胎儿暴露于母体压力和炎症:对神经发育的影响
- 批准号:
8596852 - 财政年份:2012
- 资助金额:
$ 2.54万 - 项目类别:
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 2.54万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 2.54万 - 项目类别:
Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
$ 2.54万 - 项目类别:
Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
- 批准号:
2415059 - 财政年份:2024
- 资助金额:
$ 2.54万 - 项目类别:
Standard Grant
Conference: Polymeric Materials: Science and Engineering Division Centennial Celebration at the Spring 2024 American Chemical Society Meeting
会议:高分子材料:美国化学会 2024 年春季会议科学与工程部百年庆典
- 批准号:
2415569 - 财政年份:2024
- 资助金额:
$ 2.54万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
$ 2.54万 - 项目类别:
Standard Grant
REU Site: Research Experiences for American Leadership of Industry with Zero Emissions by 2050 (REALIZE-2050)
REU 网站:2050 年美国零排放工业领先地位的研究经验 (REALIZE-2050)
- 批准号:
2349580 - 财政年份:2024
- 资助金额:
$ 2.54万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
$ 2.54万 - 项目类别:
Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 2.54万 - 项目类别:
Standard Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 2.54万 - 项目类别:
Standard Grant