CAPER: Computerized Assessment of Psychosis Risk
CAPER:精神病风险的计算机化评估
基本信息
- 批准号:10569011
- 负责人:
- 金额:$ 31.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAmericanAttenuatedAutomobile DrivingBehavioralBiological MarkersClinicalCollaborationsComputing MethodologiesDetectionDeteriorationDiagnosisDimensionsEarly DiagnosisEarly InterventionEarly identificationFoundationsFrequenciesFunctional disorderGenerationsGoalsHuman ResourcesIndividualInternetIntervention TrialInterviewJointsLinkLongitudinal StudiesMachine LearningMeasuresMethodsModelingNeurobiologyOutcomeParticipantPatient Self-ReportPerformancePersonsPopulationPredictive ValuePrimary PreventionPsychopathologyPsychosesPublic HealthPublishingRecording of previous eventsResearchResearch PersonnelRiskRoleSample SizeSecondary PreventionSeveritiesSiteSpecificitySymptomsSystemTechniquesTest ResultTestingTrainingTranslatingUnited StatesWorkYouthclinical high risk for psychosisclinical practicecognitive testingcomputerizeddesignfollow-upfunctional declinefunctional outcomeshelp-seeking behaviorhigh riskhigh risk populationimprovedmachine learning classificationmachine learning methodneuralnew therapeutic targetnext generationonline deliverypreventpreventive interventionpsychosis riskpsychotic symptomsrecruitscreeningsocialtrait
项目摘要
Project Summary/Abstract
Research suggests that early identification of individuals at clinical high risk (CHR) for psychosis may be able
to improve illness course. Studies suggest that early identification of CHR using specialized interviews with
help-seeking individuals (with attenuated psychosis symptoms) is a useful approach. This work has two major
limitations: 1) interview methods have limited specificity as only 20% of CHR individuals convert to psychosis,
and 2) the expertise needed to make CHR diagnosis is only accessible in a few academic centers. We propose
to develop a new psychosis symptom domain sensitive (PSDS) battery, prioritizing tasks that show correlations
with the symptoms that define psychosis and are tied to the neurobiological systems and computational
mechanisms implicated in these symptoms. To promote accessibility, we utilize behavioral tasks that could be
administered over the internet; this will set the stage for later research testing widespread screening that would
identify those most in need of in-depth assessment. To reach that goal we first need determine which tasks are
effective for predicting illness course and how this strategy compares to published prediction methods. We
propose to recruit 500 CHR participants, 500 help-seeking individuals, and 500 healthy controls across 5 sites
with the following Aims: Aim 1A) To develop a psychosis risk calculator through the application of machine
learning (ML) methods to the measures from the PSDS battery. In determine an exploratory ML analysis, we will
the added value of combining the PSDS with self-report measures and historical predicators; Aim
1B) We will evaluate group differences on the risk calculator score and hypothesize that the risk calculator
score of the CHR group will differ from help-seeking and healthy controls. We further hypothesize that the risk
calculator score of the CHR converters will differ significantly from groups of CHR nonconverters, help-seeking
and healthy controls. The inclusion of a help-seeking group is critical for translating the risk-calculator into
clinical practice, where the goal is to differentiate those at greatest risk for psychosis from those with other
forms of psychopathology; Aim 1C): Evaluate how baseline PSDS performance relates to symptomatic
outcome 2 years later examining: 1) symptomatic worsening treated as a continuous variable, and 2)
conversion to psychosis. We hypothesize that the PSDS calculator: 1) will predict symptom course and, 2)
that the differences observed between converters and nonconverters will be larger on the PSDS calculator
than on the NAPLS calculator. Aim 2) Use ML methods, as above, to develop calculators that predict: 2A)
social, and, 2B) role function deterioration, both observed over two years. Because negative symptoms are
strongly linked t o functional outcome than positive symptoms, we predict that negative symptom
tasks will be the strongest predictor of functional decline in both domains.This project will provide
a next-generation CHR battery, tied to illness mechanisms and powered by cutting-edge computational
methods that can be used to facilitate the earliest possible detection of psychosis risk.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LAUREN M ELLMAN其他文献
LAUREN M ELLMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LAUREN M ELLMAN', 18)}}的其他基金
CAPER: Computerized Assessment of Psychosis Risk Supplement
CAPER:精神病风险补充的计算机化评估
- 批准号:
10540475 - 财政年份:2020
- 资助金额:
$ 31.7万 - 项目类别:
CAPER: Computerized Assessment of Psychosis Risk
CAPER:精神病风险的计算机化评估
- 批准号:
10361304 - 财政年份:2020
- 资助金额:
$ 31.7万 - 项目类别:
CAPER: Computerized Assessment of Psychosis Risk
CAPER:精神病风险的计算机化评估
- 批准号:
10794659 - 财政年份:2020
- 资助金额:
$ 31.7万 - 项目类别:
CAPER: Computerized Assessment of Psychosis Risk
CAPER:精神病风险的计算机化评估
- 批准号:
9980111 - 财政年份:2020
- 资助金额:
$ 31.7万 - 项目类别:
Maternal Inflammation During Pregnancy: Clinical and Neurocognitive Outcomes in Adult Offspring
怀孕期间母体炎症:成年后代的临床和神经认知结果
- 批准号:
10600865 - 财政年份:2019
- 资助金额:
$ 31.7万 - 项目类别:
Maternal Inflammation During Pregnancy: Clinical and Neurocognitive Outcomes in Adult Offspring
怀孕期间母体炎症:成年后代的临床和神经认知结果
- 批准号:
10380812 - 财政年份:2019
- 资助金额:
$ 31.7万 - 项目类别:
1/3-Community Psychosis Risk Screening: An Instrument Development Study Supplement
1/3-社区精神病风险筛查:工具开发研究补充
- 批准号:
9675623 - 财政年份:2017
- 资助金额:
$ 31.7万 - 项目类别:
1/3 Community Psychosis Risk Screening: An Instrument Development Study
1/3 社区精神病风险筛查:仪器开发研究
- 批准号:
10203788 - 财政年份:2017
- 资助金额:
$ 31.7万 - 项目类别:
Fetal exposure to maternal stress and inflammation: Effects on neurodevelopment
胎儿暴露于母体压力和炎症:对神经发育的影响
- 批准号:
8297405 - 财政年份:2012
- 资助金额:
$ 31.7万 - 项目类别:
Fetal exposure to maternal stress and inflammation: Effects on neurodevelopment
胎儿暴露于母体压力和炎症:对神经发育的影响
- 批准号:
8596852 - 财政年份:2012
- 资助金额:
$ 31.7万 - 项目类别:
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Understanding Latin American Challenges in the 21st Century (LAC-EU)
了解拉丁美洲在 21 世纪面临的挑战 (LAC-EU)
- 批准号:
EP/Y034694/1 - 财政年份:2024
- 资助金额:
$ 31.7万 - 项目类别:
Research Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
REU Site: Research Experiences for American Leadership of Industry with Zero Emissions by 2050 (REALIZE-2050)
REU 网站:2050 年美国零排放工业领先地位的研究经验 (REALIZE-2050)
- 批准号:
2349580 - 财政年份:2024
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
- 批准号:
2415059 - 财政年份:2024
- 资助金额:
$ 31.7万 - 项目类别:
Standard Grant