Development of novel polysomnography-based digital biomarkers to predict Alzheimer’s disease and Parkinson’s disease in real world settings
开发基于多导睡眠图的新型数字生物标志物,以预测现实世界中的阿尔茨海默病和帕金森病
基本信息
- 批准号:10807908
- 负责人:
- 金额:$ 46.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2025-09-29
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlzheimer disease detectionAlzheimer disease preventionAlzheimer disease screeningAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease modelAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAlzheimer’s disease biomarkerArtificial IntelligenceAsianBiological MarkersBlack raceBloodBrainBreathingClassificationClinicalClinical TrialsCommunitiesComplexDataDementiaDevelopmentDevice or Instrument DevelopmentDevicesDiagnosisDigital biomarkerDimensionsDiseaseDisease ProgressionEarly DiagnosisEarly InterventionEconomic BurdenElderlyElectrocardiogramElectroencephalographyEpidemiologyFoundationsFutureGoalsHealth BenefitHeartHigh PrevalenceHispanicHomeIndividualInterventionKnowledgeLinkLongitudinal cohortMeasuresModalityModelingMonitorMuscleNerve DegenerationNeurodegenerative DisordersParkinson DiseaseParticipantPathogenesisPatternPerformancePersonsPhasePhysiologicalPolysomnographyPopulationPositioning AttributePredictive ValuePreventionPublic HealthREM Sleep Behavior DisorderReportingResearchRisk FactorsScientistSensitivity and SpecificitySignal TransductionSleepSleep Apnea SyndromesSleep ArchitectureSleep DisordersSleep disturbancesStructureTimeUnited States National Institutes of HealthWorkagedartificial intelligence methodbrain healthclinical diagnosiscohortcommunity settingcomputational neurosciencecostcost effectivedata resourcedigitaldisease phenotypedisorder riskexperiencefollow-uphigh riskhigh risk populationimprovedinnovationmenmonitoring devicemultidisciplinarymultimodalitynovelosteoporosis with pathological fractureprediction algorithmpredictive markerpredictive modelingrespiratoryrisk predictionscreeningstandard measuretargeted treatmentuser-friendly
项目摘要
PROJECT SUMMARY/ ABSTRACT
One of the greatest unmet challenges in the management of neurodegenerative diseases is the early diagnosis
of Alzheimer's disease and related dementias (ADRD) and Parkinson's disease (PD). Given their high
prevalence, long prodromal period, and lack of disease-modifying therapies, early detection of ADRD and PD is
of critical importance. Facilitated by recent advances in artificial intelligence (AI) methods, this proposal will break
new ground by developing novel data-driven screening biomarkers for ADRD and PD, using multimodal,
multidimensional, real-time polysomnography (PSG) sleep signals. Despite the growing evidence that suggests
a bi-directional relationship between sleep and ADRD/PD, little is known about the utility of the multimodal PSG
sleep signals [e.g., electroencephalogram (EEG) for the brain, electrocardiogram (ECG) for the heart,
electromyogram (EMG) for the muscle, and respiratory flow and effort for breathing] for identifying future ADRD
and PD cases. As a multidisciplinary team with strong preliminary data and extensive experiences in research
of sleep and neurodegeneration, we are uniquely positioned to address this gap. The goal of this proposal is to
use data-driven AI approaches to generate cost-effective and user-friendly PSG-based digital biomarkers for the
prediction of ADRD and PD in clinical and at-home settings. Our hypothesis is that PSG sleep signals could be
used to develop prediction algorithms that identify ADRD and PD, years before clinical diagnoses, and that the
prediction algorithms can generalize from clinical to community settings. We have an unprecedented opportunity
to leverage data from three NIH-supported multicenter longitudinal cohorts: a diverse clinical sleep cohort, the
Complete AI Sleep Report (CAISR) study, consisting of over 70K subjects aged 50 years and older with 15 years
of follow-up, and two community-based cohorts, the Osteoporotic Fractures in Men (MrOS) Sleep Study and the
Study of Osteoporotic Fractures (SOF), with over 3500 community-dwelling older adults followed for up to 13
years. Using state-of-the-art AI models, we will pursue two specific aims: 1) discover PSG biomarkers that
identify current and future diagnoses of ADRD and PD in clinical settings; and 2) validate the performance and
generalizability of the PSG biomarkers for detecting ADRD and PD using in-home PSG in community settings.
This will be the first study to create cost-effective, non-invasive PSG-based screening biomarkers for identifying
ADRD and PD in real-world settings. This will set the foundation for further studying whether non-invasive PSG
biomarkers are predictive of ADRD/PD pathogenesis and may be integrated with other innovative biomarkers
for improved characterization of ADRD and PD phenotypes. By identifying specific PSG modalities with the best
predictive value, this work will directly inform the development of new user-friendly devices for long-term
monitoring of sleep biomarkers and ADRD/PD risk in home settings. This offers a transformative public health
impact, as screening ADRD and PD through daily sleep monitoring is scalable and will identify high-risk
individuals for early diagnosis and early intervention.
项目概要/摘要
神经退行性疾病治疗中尚未解决的最大挑战之一是早期诊断
阿尔茨海默病及相关痴呆症(ADRD)和帕金森病(PD)。鉴于他们的高
由于 ADRD 和 PD 的患病率较高、前驱期较长且缺乏疾病缓解疗法,因此早期发现 ADRD 和 PD
至关重要。在人工智能(AI)方法的最新进展的推动下,该提案将打破
通过使用多模式开发新的数据驱动的 ADRD 和 PD 筛选生物标志物,
多维实时多导睡眠图 (PSG) 睡眠信号。尽管越来越多的证据表明
睡眠与 ADRD/PD 之间存在双向关系,但对于多模式 PSG 的实用性知之甚少
睡眠信号[例如,大脑的脑电图 (EEG)、心脏的心电图 (ECG)、
肌肉肌电图 (EMG)、呼吸流量和呼吸努力] 用于识别未来的 ADRD
和PD病例。作为一个多学科团队,拥有强大的前期数据和丰富的研究经验
在睡眠和神经退行性疾病方面,我们具有独特的优势来解决这一差距。该提案的目标是
使用数据驱动的人工智能方法来生成具有成本效益且用户友好的基于 PSG 的数字生物标记物
在临床和家庭环境中预测 ADRD 和 PD。我们的假设是 PSG 睡眠信号可能是
用于开发预测算法,在临床诊断前数年识别 ADRD 和 PD,并且
预测算法可以从临床环境推广到社区环境。我们有一个前所未有的机会
利用来自 NIH 支持的三个多中心纵向队列的数据:多样化的临床睡眠队列、
完整的人工智能睡眠报告 (CAISR) 研究,由超过 70,000 名 50 岁及以上 15 岁受试者组成
随访,以及两个基于社区的队列,男性骨质疏松性骨折 (MrOS) 睡眠研究和
骨质疏松性骨折 (SOF) 研究对 3500 多名社区居住的老年人进行了长达 13 次的随访
年。使用最先进的人工智能模型,我们将追求两个具体目标:1)发现 PSG 生物标志物
确定临床环境中 ADRD 和 PD 当前和未来的诊断; 2)验证性能和
PSG 生物标志物在社区环境中使用家庭 PSG 检测 ADRD 和 PD 的普遍性。
这将是第一项创建具有成本效益、非侵入性的基于 PSG 的筛选生物标志物的研究,用于识别
现实环境中的 ADRD 和 PD。这将为进一步研究非侵入性PSG是否有效奠定了基础。
生物标志物可预测 ADRD/PD 发病机制,并可与其他创新生物标志物整合
改善 ADRD 和 PD 表型的表征。通过确定最佳的具体 PSG 模式
预测价值,这项工作将直接为新的用户友好设备的长期开发提供信息
监测家庭环境中的睡眠生物标志物和 ADRD/PD 风险。这提供了变革性的公共卫生
影响,因为通过日常睡眠监测筛查 ADRD 和 PD 是可扩展的,并且可以识别高风险
个人进行早期诊断和早期干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yue Leng其他文献
Yue Leng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yue Leng', 18)}}的其他基金
Napping, Sleep, Cognitive Decline and Risk of Alzheimer's Disease
打盹、睡眠、认知能力下降和阿尔茨海默病风险
- 批准号:
10461715 - 财政年份:2017
- 资助金额:
$ 46.92万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 46.92万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 46.92万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 46.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




