DNA damage tolerance pathway choice in Drosophila

果蝇 DNA 损伤耐受途径的选择

基本信息

  • 批准号:
    10809272
  • 负责人:
  • 金额:
    $ 0.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

DNA damage tolerance pathway choice in Drosophila Project Summary When replication forks encounter DNA lesions, they must bypass these roadblocks through DNA damage tolerance mechanisms or DNA synthesis will stop, leading to gaps in the genome, genomic instability, and eventual cell death. Strategies that cells use for bypass include the recruitment of error-prone translesion synthesis polymerases, template switching at the replication fork, and repriming downstream of the lesion followed by gap filling. The choice of damage tolerance mechanism is important, as some pathways are more mutagenic than others. However, the control of lesion bypass pathway choice in metazoans is not well understood, particularly in the context of different tissues. Such knowledge is critical in order to understand how both normal and cancerous cells deal with replication-blocking lesions that result from treatment with chemotherapeutic agents. We have recently discovered that the REV1 protein is a key mediator of DNA damage tolerance in Drosophila. REV1 promotes the recruitment of translesion polymerases to bypass damaged bases, which we have shown is the preferred tolerance mechanism in rapidly dividing tissues in the developing fly. In addition, REV1 appears to mediate template switching through an unknown mechanism. In the experiments described here, we will use domain-specific mutants, genetic analysis, and cellular assays in larval imaginal discs to characterize how REV1 coordinates various damage tolerance pathways to promote continuance of DNA replication. In addition, we will use both genetic and biochemical methods to identify new proteins involved in damage tolerance. Our investigations will be aided by novel techniques that we have developed to assess DNA repair and mutagenesis in both cells and tissues and by a rich collection of DNA repair and replication mutants. The use of whole Drosophila in our experimental design provides us with an opportunity to study damage tolerance in the context of tissue specificity and development. Together, our proposed studies will advance our long-term goal to understand why different DNA damage tolerance mechanisms are preferentially used in different contexts and how this choice of bypass strategy impacts cellular survival and genome stability.
果蝇 DNA 损伤耐受途径的选择 项目概要 当复制叉遇到 DNA 损伤时,它们必须绕过这些障碍 DNA损伤耐受机制或DNA合成将停止,导致基因组中出现缺口, 基因组不稳定,最终导致细胞死亡。细胞用于旁路的策略包括 招募容易出错的跨损伤合成聚合酶,在 复制叉,并在病变下游重新启动,然后填充间隙。的选择 损伤耐受机制很重要,因为某些途径比其他途径更具诱变性。 然而,后生动物中病变旁路途径选择的控制尚不清楚, 特别是在不同组织的情况下。这些知识对于理解至关重要 正常细胞和癌细胞如何处理由复制引起的病变 用化疗药物治疗。 我们最近发现 REV1 蛋白是 DNA 损伤耐受的关键介质 在果蝇中。 REV1促进跨损伤聚合酶的募集以绕过受损的 碱基,我们已经证明这是快速分裂组织中的首选耐受机制 发育中的苍蝇。此外,REV1 似乎通过一个 未知的机制。在这里描述的实验中,我们将使用域特异性突变体, 幼虫成虫盘中的遗传分析和细胞测定来表征 REV1 协调各种损伤耐受途径以促进 DNA 复制的持续性。在 此外,我们将使用遗传和生化方法来鉴定参与的新蛋白质 损伤容限。我们开发的新技术将有助于我们的调查 通过丰富的 DNA 集合来评估细胞和组织中的 DNA 修复和突变 修复和复制突变体。在我们的实验设计中使用整个果蝇提供了 我们有机会在组织特异性和 发展。我们提出的研究将共同​​推进我们的长期目标,以了解 为什么在不同的情况下优先使用不同的 DNA 损伤耐受机制 以及这种旁路策略的选择如何影响细胞存活和基因组稳定性。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Division of Labor by the HELQ, BLM, and FANCM Helicases during Homologous Recombination Repair in Drosophila melanogaster.
  • DOI:
    10.3390/genes13030474
  • 发表时间:
    2022-03-08
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Thomas A;Cox J;Wolfe KB;Mingalone CH;Yaspan HR;McVey M
  • 通讯作者:
    McVey M
BRCA1 protects against its own fragility.
  • DOI:
    10.1016/j.molcel.2022.09.023
  • 发表时间:
    2022-10-20
  • 期刊:
  • 影响因子:
    16
  • 作者:
    Martin, Sara K.;McVey, Mitch
  • 通讯作者:
    McVey, Mitch
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mitch McVey其他文献

Mitch McVey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mitch McVey', 18)}}的其他基金

DNA damage tolerance pathway choice in Drosophila
果蝇 DNA 损伤耐受途径的选择
  • 批准号:
    10399577
  • 财政年份:
    2020
  • 资助金额:
    $ 0.97万
  • 项目类别:
DNA damage tolerance pathway choice in Drosophila
果蝇 DNA 损伤耐受途径的选择
  • 批准号:
    10617244
  • 财政年份:
    2020
  • 资助金额:
    $ 0.97万
  • 项目类别:
Mechanisms and consequences of inaccurate DNA double-strand break repair
DNA双链断裂修复不准确的机制和后果
  • 批准号:
    8883567
  • 财政年份:
    2011
  • 资助金额:
    $ 0.97万
  • 项目类别:
Mechanisms and consequences of inaccurate DNA double-strand break repair
DNA双链断裂修复不准确的机制和后果
  • 批准号:
    8685277
  • 财政年份:
    2011
  • 资助金额:
    $ 0.97万
  • 项目类别:
Mechanisms and consequences of inaccurate DNA double-strand break repair
DNA双链断裂修复不准确的机制和后果
  • 批准号:
    8500368
  • 财政年份:
    2011
  • 资助金额:
    $ 0.97万
  • 项目类别:
Mechanisms and consequences of inaccurate DNA double-strand break repair
DNA双链断裂修复不准确的机制和后果
  • 批准号:
    8325667
  • 财政年份:
    2011
  • 资助金额:
    $ 0.97万
  • 项目类别:
Mechanisms and consequences of inaccurate DNA double-strand break repair
DNA双链断裂修复不准确的机制和后果
  • 批准号:
    8107221
  • 财政年份:
    2011
  • 资助金额:
    $ 0.97万
  • 项目类别:
Mutagenesis due to Translesion Polymerase Usage during Replication and Repair
复制和修复过程中使用跨损伤聚合酶引起的突变
  • 批准号:
    8845216
  • 财政年份:
  • 资助金额:
    $ 0.97万
  • 项目类别:
Mutagenesis due to Translesion Polymerase Usage during Replication and Repair
复制和修复过程中使用跨损伤聚合酶引起的突变
  • 批准号:
    9269234
  • 财政年份:
  • 资助金额:
    $ 0.97万
  • 项目类别:
Mutagenesis due to Translesion Polymerase Usage during Replication and Repair
复制和修复过程中使用跨损伤聚合酶引起的突变
  • 批准号:
    9059121
  • 财政年份:
  • 资助金额:
    $ 0.97万
  • 项目类别:

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 0.97万
  • 项目类别:
    Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 0.97万
  • 项目类别:
    Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 0.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 0.97万
  • 项目类别:
    Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 0.97万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 0.97万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 0.97万
  • 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 0.97万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 0.97万
  • 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
  • 批准号:
    2334134
  • 财政年份:
    2023
  • 资助金额:
    $ 0.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了