Integrative structural analysis of human insulin degrading enzyme
人胰岛素降解酶的整体结构分析
基本信息
- 批准号:10810459
- 负责人:
- 金额:$ 1.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAlzheimer&aposs DiseaseAmyloid FibrilsAmyloid beta-ProteinAnimal ModelBlood GlucoseCryoelectron MicroscopyDefectDevelopmentDiabetes MellitusDiseaseEngineeringEnzyme Inhibitor DrugsEnzymesFamilyFoundationsGlucagonGoalsHormonesHumanInsulinInsulinaseKnowledgeLinkMechanicsMetalloproteasesMethodsModelingMolecularMolecular ConformationMotionMusNon-Insulin-Dependent Diabetes MellitusPeptide HydrolasesPeptidesPhysiologicalProcessProteomeRegulationResearchRoleTimeUnited States National Institutes of HealthWorkamyloid peptidecombatcytotoxicdesignimage processingimprovedinnovationislet amyloid polypeptidemembermonomernovelparent grantscreeningsimulationsmall moleculetime use
项目摘要
Abstract of Parent grant (NIH R01 GM121964):
Aggregates of amyloid peptides, such as amyloid fibrils are highly cytotoxic, as exemplified by the role of amyloid
β (Aβ) in Alzheimer's disease. To maintain a healthy proteome, a number of proteases target the monomeric
form of amyloid peptides because this form fuels both seeding and elongation of amyloid fibrils. Insulin degrading
enzyme (IDE) is a 110 kDa metalloprotease that degrades various amyloid peptides, including Aβ and three
blood glucose-regulating hormones, namely insulin, amylin, and glucagon. Defects in IDE alter the progression
of type 2 diabetes mellitus and Alzheimer’s disease in animal models and are linked to these diseases in humans.
IDE inhibitors can control blood glucose level in mice and hold promise for treating diabetes. One of the key
steps in the IDE catalytic cycle is the selective recognition and unfolding of amyloid peptides prior to degradation.
Our premise is that the understudied conformational dynamics of IDE provide the mechanical basis for the
unfolding of peptide substrates. Thus, we can leverage our understanding of these processes to selectively
modulate the activity of IDE towards specific substrates. Our long-term goals are to elucidate the molecular
details of how IDE selectively recognizes amyloid peptides and utilize this knowledge to develop novel IDE-
based therapies to improve the human condition. Toward this goal, we have integrated ensemble structural
determination and solution-based methods to show that IDE is a member of the chamber-containing protease,
aka cryptidase, family that uses a sizable catalytic chamber to engulf monomeric amyloid peptides. We have
also generated a working model that explains how IDE uses two key conformational switches to selectively
degrade amyloid peptides. Our objectives for this application are to determine key unsolved conformational
states and probe the conformational dynamics of IDE during the catalytic cycle by applying state-of-art integrative
structural approaches. We will then combine MD simulation and screening to identify strategies to modulate the
catalytic activity and selectivity of IDE. Our research rationale is that a deeper understanding of the regulation
and functions of IDE will allow us to modulate its activity through engineering or novel small molecules and
ultimately facilitate the design of IDE-based therapies to combat proteostatic imbalances. We will use time-
resolved cryoEM and SAXS to understand the structural basis for substrate recognition during the key time
window when IDE first encounters substrate in combination with advanced cryoEM image processing algorithms
and MD simulation to address how IDE motions can unfold physiologically relevant substrates. We will apply the
knowledge gained from the substrate recognition and unfolding studies to develop a screening strategy to identify
methods to selectively modulate the degradation of Aβ by IDE. This work will significantly enhance our
understanding of the IDE catalytic cycle by defining key conformational states under physiologically relevant
conditions and offer a platform to merge integrative structural analysis and MD simulation towards the discovery
of innovative enzyme modulating strategies as the developmental foundation of novel IDE-based therapies.
家长资助(NIH R01 GM121964)摘要:
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reinvestigating the synthesis and efficacy of small benzimidazole derivatives as presequence protease enhancers.
- DOI:10.1016/j.ejmech.2019.111746
- 发表时间:2019-12
- 期刊:
- 影响因子:6.7
- 作者:Nan-Sheng Li;W. Liang;J. Piccirilli;Wei-Jen Tang
- 通讯作者:Nan-Sheng Li;W. Liang;J. Piccirilli;Wei-Jen Tang
Catalytic Mechanism of Amyloid-β Peptide Degradation by Insulin Degrading Enzyme: Insights from Quantum Mechanics and Molecular Mechanics Style Møller-Plesset Second Order Perturbation Theory Calculation.
- DOI:10.1021/acs.jcim.8b00406
- 发表时间:2018-09-24
- 期刊:
- 影响因子:5.6
- 作者:Lai R;Tang WJ;Li H
- 通讯作者:Li H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WEI-JEN TANG其他文献
WEI-JEN TANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WEI-JEN TANG', 18)}}的其他基金
Integrative structural analysis of human insulin degrading enzyme
人胰岛素降解酶的整体结构分析
- 批准号:
10684300 - 财政年份:2017
- 资助金额:
$ 1.16万 - 项目类别:
Integrative structural analysis of human insulin degrading enzyme
人胰岛素降解酶的整体结构分析
- 批准号:
10490454 - 财政年份:2017
- 资助金额:
$ 1.16万 - 项目类别:
Integrative structural analysis of human insulin degrading enzyme
人胰岛素降解酶的整体结构分析
- 批准号:
10367488 - 财政年份:2017
- 资助金额:
$ 1.16万 - 项目类别:
ANALYZE THE COMPLEX PROTEIN ASSEMBLY USING SAXS
使用 SAXS 分析复杂的蛋白质组装
- 批准号:
8361305 - 财政年份:2011
- 资助金额:
$ 1.16万 - 项目类别:
SAXS OF THE COMPLEX OF ANTHRAX TOXINS AND HUMAN INSULIN DEGRADING ENZYME
炭疽毒素与人胰岛素降解酶复合物的SAXS
- 批准号:
8168652 - 财政年份:2010
- 资助金额:
$ 1.16万 - 项目类别:
Regulation and Catalysis of Human Insulin Degrading Enzyme
人胰岛素降解酶的调控与催化
- 批准号:
7898366 - 财政年份:2009
- 资助金额:
$ 1.16万 - 项目类别:
PRESEQUENCE PEPTIDASE IN NATIVE OR COMPLEXED WITH SUBSTRATES
天然或与底物复合的前序列肽酶
- 批准号:
7956813 - 财政年份:2009
- 资助金额:
$ 1.16万 - 项目类别:
INSULIN DEGRADING ENZYME IN COMPLEX WITH NATRIURETIC PEPTIDES
胰岛素降解酶与钠尿肽的复合物
- 批准号:
7956832 - 财政年份:2009
- 资助金额:
$ 1.16万 - 项目类别:
INSULIN DEGRADING ENZYME IN COMPLEX WITH THE NOVEL SUBSTRATES
胰岛素降解酶与新型底物的复合物
- 批准号:
7956828 - 财政年份:2009
- 资助金额:
$ 1.16万 - 项目类别:
HUMAN INSULIN DEGRADING ENZYME-INHIBITOR COMPLEX
人胰岛素降解酶抑制剂复合物
- 批准号:
7601588 - 财政年份:2007
- 资助金额:
$ 1.16万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 1.16万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 1.16万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 1.16万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 1.16万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 1.16万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 1.16万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 1.16万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 1.16万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 1.16万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 1.16万 - 项目类别:
Continuing Grant














{{item.name}}会员




