Rapid Clinical Snapshots from the EMR among Pneumonia Patients

肺炎患者 EMR 的快速临床快照

基本信息

项目摘要

DESCRIPTION (PROVIDED BY APPLICANT): Current research on hospitalized patients has focused on patients in intensive care units (ICUs), which have been early adopters of electronic medical records (EMRs). Research on general medical-surgical ward patients has been limited due to the high cost of manual abstraction of physiologic data, particularly vital signs. Given the paucity of such data, clinicians lack quantitative tools to gauge the process of hospital care at different points in time, let alone the level of risk of deterioration a given patient may have at different points in the course of a hospital stay. This project employs the inpatient EMR to provide such tools. It focuses on a specific patient population that has extremely high morbidity and mortality: hospitalized adults with community-acquired pneumonia (CAP) who experience an unplanned transfer to a higher level of care (e.g., from a general medical surgical ward to the ICU). Approximately 70% of these transfers occur in the first 72 hours in the hospital, and death rates among these patients range from 10 to 40%, with severity-adjusted observed to expected mortality ratios as high as 16. Our long term goal is to harness the power of the inpatient EMR for quality monitoring, quality improvement, and the identification of effective practices and interventions designed to prevent in-hospital deterioration. To achieve this goal, we have two specific aims: (1) Using a case-cohort methodology, we will develop models, suitable for embedding in the EMR, to predict the occurrence of critical illness within 72 hours of hospital admission among CAP patients who were not initially admitted to the ICU. Using comprehensive inpatient and outpatient EMR data from 20 Northern California Kaiser Permanente hospitals, we will identify a cohort of approximately 13,700 hospitalized patients meeting the following criteria: age =18 years, admission diagnosis of CAP; and not admitted only for palliative or comfort care. Critical illness is defined as (a) shock, (b) respiratory failure requiring assisted ventilation, and/or (c) cardiac arrest. We will develop predictive models using approximately 8,800 patient hospitalization records (of which we estimate 485, or 5.5%, will develop critical illness within 72 hours) and validate them on approximately 4,900 patient records (with 270 developing critical illness within 72 hours). (2) Using the results of Specific Aim 1, we will generate time-delimited "snapshots" of the characteristics of CAP patients who did and who did not develop critical illness. The "snapshots" will characterize CAP patients on admission and at 12, 24, and 48 hours into their hospital stay with respect to (a) their demographic, clinical, and physiologic characteristics (including vital signs, laboratory test results, and severity of illness scores); (b) key processes of care, such as whether and when specific tests (e.g., chest roentgenograms, pulse oximetry, lactates) and interventions (e.g., provision of supplemental oxygen, treatment with systemic antibiotics, intravenous fluid boluses) were performed; and (c) their hospital outcomes, including deterioration, death, length of stay (LOS), and discharge disposition for survivors.
描述(由申请人提供):目前对住院患者的研究主要集中在重症监护病房(ICU)的患者,这些患者已经成为电子病历(EMR)的早期采用者。由于人工提取生理数据,特别是生命体征的高成本,对普通内外科病房患者的研究一直受到限制。鉴于此类数据的缺乏,临床医生缺乏量化工具来衡量不同时间点的医院护理过程,更不用说给定患者在住院过程中的不同时间点可能具有的恶化风险水平。本项目使用住院患者电子病历来提供这样的工具。它侧重于发病率和死亡率极高的特定患者群体:患有社区获得性肺炎(CAP)的住院成年人,他们经历了意外转移到更高级别的护理(例如,从普通内科外科病房转移到ICU)。大约70%的转院发生在医院的前72小时,这些患者的死亡率从10%到40%不等,经严重程度调整后的观察死亡率与预期死亡率高达16%。我们的长期目标是利用住院EMR的力量进行质量监测、质量改进,并确定旨在防止医院内恶化的有效做法和干预措施。为了达到这一目标,我们有两个具体目标:(1)采用病例队列方法,我们将开发适合嵌入EMR的模型,以预测最初未进入ICU的慢性阻塞性肺病患者在入院72小时内发生危重疾病的情况。使用20家北加州Kaiser Permanente医院的综合住院和门诊EMR数据,我们将确定符合以下标准的大约13,700名住院患者:年龄=18岁,入院诊断为CAP;并且不只是为了缓解或舒适护理而入院。危重疾病的定义是:(A)休克,(B)需要辅助呼吸的呼吸衰竭,和/或(C)心脏骤停。我们将使用大约8,800名患者的住院记录(我们估计其中485人,或5.5%将在72小时内发展为危重疾病)来开发预测模型,并在大约4,900名患者记录上验证它们(其中270人在72小时内发展为危重疾病)。(2)使用特定目标1的结果,我们将生成时间限定的CAP患者的特征快照,这些患者发生了危重疾病,而没有发展为危重疾病。“快照”将描述CAP患者入院时以及入院后12、24和48小时的特征:(A)他们的人口统计、临床和生理特征(包括生命体征、实验室检查结果和病情严重程度评分);(B)护理的关键过程,例如是否以及何时进行特定测试(例如,胸片、脉搏血氧仪、乳酸)和干预措施(例如,补充氧气、全身抗生素治疗、静脉滴注液体);以及(C)他们的住院结果,包括病情恶化、死亡、住院时间(LOS)和幸存者的出院处置。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GABRIEL J. ESCOBAR其他文献

GABRIEL J. ESCOBAR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GABRIEL J. ESCOBAR', 18)}}的其他基金

Rapid Clinical Snapshots from the EMR among Pneumonia Patients
肺炎患者 EMR 的快速临床快照
  • 批准号:
    8111670
  • 财政年份:
    2009
  • 资助金额:
    $ 48.67万
  • 项目类别:
Rapid Clinical Snapshots from the EMR among Pneumonia Patients
肺炎患者 EMR 的快速临床快照
  • 批准号:
    7785886
  • 财政年份:
    2009
  • 资助金额:
    $ 48.67万
  • 项目类别:
Sepsis and Critical Illness in Babies > 34 Weeks Gestation
妊娠 34 周以上婴儿的败血症和危重疾病
  • 批准号:
    7290973
  • 财政年份:
    2006
  • 资助金额:
    $ 48.67万
  • 项目类别:
Sepsis and Critical Illness in Babies > 34 Weeks Gestation
妊娠 34 周以上婴儿的败血症和危重疾病
  • 批准号:
    7090169
  • 财政年份:
    2006
  • 资助金额:
    $ 48.67万
  • 项目类别:
Sepsis and Critical Illness in Babies > 34 Weeks Gestation
妊娠 34 周以上婴儿的败血症和危重疾病
  • 批准号:
    7474017
  • 财政年份:
    2006
  • 资助金额:
    $ 48.67万
  • 项目类别:
HOW MUCH DOES SHE REALLY DRINK? AN HMO INTERVENTION
她到底喝了多少?
  • 批准号:
    6468335
  • 财政年份:
    1999
  • 资助金额:
    $ 48.67万
  • 项目类别:
HOW MUCH DOES SHE REALLY DRINK? AN HMO INTERVENTION
她到底喝了多少?
  • 批准号:
    6371599
  • 财政年份:
    1999
  • 资助金额:
    $ 48.67万
  • 项目类别:
HOW MUCH DOES SHE REALLY DRINK? AN HMO INTERVENTION
她到底喝了多少?
  • 批准号:
    6509062
  • 财政年份:
    1999
  • 资助金额:
    $ 48.67万
  • 项目类别:
HOW MUCH DOES SHE REALLY DRINK? AN HMO INTERVENTION
她到底喝了多少?
  • 批准号:
    6745307
  • 财政年份:
    1999
  • 资助金额:
    $ 48.67万
  • 项目类别:
HOW MUCH DOES SHE REALLY DRINK--HMO INTERVENTION
她实际喝了多少——HMO 干预
  • 批准号:
    6051728
  • 财政年份:
    1999
  • 资助金额:
    $ 48.67万
  • 项目类别:

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
  • 批准号:
    2734768
  • 财政年份:
    2026
  • 资助金额:
    $ 48.67万
  • 项目类别:
    Studentship
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    $ 48.67万
  • 项目类别:
    Standard Grant
Exploring the Impact of Clinical Diagnosis on Health and Education Outcomes for Children Receiving Special Educational Needs support for Autism
探索临床诊断对接受自闭症特殊教育需求支持的儿童的健康和教育结果的影响
  • 批准号:
    ES/Z502431/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.67万
  • 项目类别:
    Fellowship
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.67万
  • 项目类别:
    Fellowship
From lymphatics to evaluating resolution therapeutics in clinical trials
从淋巴管到评估临床试验中的解决疗法
  • 批准号:
    MR/Y013050/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.67万
  • 项目类别:
    Fellowship
Strategy for improving clinical obesity therapeutics
改善临床肥胖治疗的策略
  • 批准号:
    MR/Y014707/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.67万
  • 项目类别:
    Research Grant
VITAL: VIrtual Twins as tools for personalised clinicAL care
VITAL:虚拟双胞胎作为个性化临床护理的工具
  • 批准号:
    10106393
  • 财政年份:
    2024
  • 资助金额:
    $ 48.67万
  • 项目类别:
    EU-Funded
Quantum-Enabled Brain Imaging: A Pathway to Clinical Utility
量子脑成像:临床应用的途径
  • 批准号:
    10107115
  • 财政年份:
    2024
  • 资助金额:
    $ 48.67万
  • 项目类别:
    Small Business Research Initiative
Determining the clinical utility of BioEP: a multisite, prospective, study
确定 BioEP 的临床效用:一项多中心前瞻性研究
  • 批准号:
    10090508
  • 财政年份:
    2024
  • 资助金额:
    $ 48.67万
  • 项目类别:
    Investment Accelerator
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
  • 批准号:
    10089281
  • 财政年份:
    2024
  • 资助金额:
    $ 48.67万
  • 项目类别:
    Investment Accelerator
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了