Probing oral pathogen interactions in picoliter-scale enclosures

探讨皮升级外壳中口腔病原体的相互作用

基本信息

  • 批准号:
    8127390
  • 负责人:
  • 金额:
    $ 3.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-03-01 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Within the human mouth, bacterial cell-cell communication and complex multispecies interactions regulate microbial gene expression, affecting the ecological balance of oral biofilms and human health. Many bacteria communicate using small signaling molecules, a process termed quorum sensing (QS). The basic QS model states that bacteria 'count' their cell numbers using signaling molecules, and modulate group behavior based upon population density. The concentration of these quorum signals within the human mouth is likely affected by multiple environmental factors, such as population size and flow of saliva or crevicular fluid across dental plaque, however it is not yet fully understood which factors regulate QS. This proposal aims to characterize the parameters that affect QS, and examine interactions in highly dense, small populations of three species of oral bacteria: Streptococcus gordonii, Aggregatibacter actinomycetemcomitans (Aa), and Streptococcus mutans. S. gordonii is a commensal and opportunistic pathogen, and colonizes adjacent to both Aa, the etiologic agent of localized aggressive periodontitis, and S. mutans, the primary causative agent of dental caries in humans. Current microbiology studies almost exclusively examine microbial communication and interactions on scales much larger than normally occur in the human mouth. We propose a change in the approach for probing microbial interactions using a novel methodology we developed to study smaller population sizes (d104 cells). With this technology, a single bacterium can be captured within a picoliter-sized trap made of cross-linked protein. Within these porous bacterial "lobster traps," bacteria grow rapidly to a desired cell number enclosed in a three-dimensional user-defined geometry. The goal of this proposal is to determine whether phenotypes of large populations are relevant in small populations, and to determine how spatial distribution of species affects polymicrobial interactions. We plan to examine two previously characterized polymicrobial interactions in small communities within the traps: S. gordonii H2O2 production mediating Aa resistance to host innate immunity; and S. gordonii protease production inhibiting bacteriocin expression in S. mutans. We will probe for these interactions in picoliter-sized communities using GFP transcriptional reporters strains, and fluorescent live/dead stains. The goals of this project are in line with the mission of the National Institute of Dental and Craniofacial Research: the proposal aims to improve the understanding of communication and multispecies interactions of oral pathogens, and furthermore will advance the field of oral microbiology by introducing a novel, useful technique for studying population sizes relevant to infections and disease in the human mouth. PUBLIC HEALTH RELEVANCE: Current microbiology studies almost exclusively examine bacteria on scales much larger than normally occur in the human mouth. We propose a change in the approach for probing microbial interactions using a technique that monitors population sizes from 1 to 10,000 bacteria. With this advanced technology, we will study disease related bacterial cell-cell communication and multispecies interactions in population sizes relevant to those in the human oral cavity.
描述(申请人提供):在人类口腔内,细菌细胞间的通讯和复杂的多物种相互作用调节微生物基因的表达,影响口腔生物膜的生态平衡和人类健康。许多细菌使用小信号分子进行交流,这一过程被称为群体感应(QS)。基本的QS模型指出,细菌使用信号分子来“计算”它们的细胞数量,并根据种群密度来调节群体行为。这些法定信号在人类口腔内的浓度可能受到多种环境因素的影响,如人口大小和唾液或沟液通过牙菌斑的流量,然而,目前还不完全清楚哪些因素调节QS。这项建议旨在表征影响QS的参数,并研究三种口腔细菌:戈登链球菌、伴生放线杆菌(AA)和变形链球菌的高密度、小种群之间的相互作用。戈登链霉菌是一种共生性和机会性的病原体,与引起局部侵袭性牙周炎的致病菌AA和引起人类龋齿的变形链球菌相邻。目前的微生物学研究几乎完全是在比通常在人类口腔中发生的规模大得多的范围内研究微生物的交流和相互作用。我们建议改变探索微生物相互作用的方法,使用我们开发的一种新的方法来研究较小的种群数量(d104细胞)。利用这项技术,可以在皮升大小的由交联蛋白质制成的陷阱中捕获单个细菌。在这些多孔性的细菌“龙虾陷阱”内,细菌迅速生长到所需的细胞数量,这些细胞被包围在用户定义的三维几何图形中。这项建议的目标是确定大种群的表型是否与小种群相关,并确定物种的空间分布如何影响多菌相互作用。我们计划在陷阱内的小群落中检测两种先前描述的多微生物相互作用:戈登链球菌产生H_2O_2介导对宿主天然免疫的AA抵抗;戈登链球菌产生蛋白酶抑制变形链球菌中细菌素的表达。我们将使用GFP转录报告菌株和荧光活/死染色在皮升大小的社区中探索这些相互作用。该项目的目标与国家牙科和颅面研究所的使命一致:该提案旨在提高对口腔病原体之间的交流和多物种相互作用的了解,并通过引入一种新的、有用的技术来研究与人类口腔感染和疾病相关的种群大小,进一步推动口腔微生物学领域的发展。 与公共健康相关:目前的微生物学研究几乎只检查比通常在人类口腔中出现的规模大得多的细菌。我们建议改变探测微生物相互作用的方法,使用一种监测从1个细菌到10,000个细菌的种群大小的技术。有了这项先进的技术,我们将研究与疾病相关的细菌细胞-细胞通讯和与人类口腔相关的种群大小中的多物种相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aimee Katherine Wessel其他文献

Aimee Katherine Wessel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aimee Katherine Wessel', 18)}}的其他基金

Probing oral pathogen interactions in picoliter-scale enclosures
探讨皮升级外壳中口腔病原体的相互作用
  • 批准号:
    8415563
  • 财政年份:
    2011
  • 资助金额:
    $ 3.21万
  • 项目类别:
Probing oral pathogen interactions in picoliter-scale enclosures
探讨皮升级外壳中口腔病原体的相互作用
  • 批准号:
    8261052
  • 财政年份:
    2011
  • 资助金额:
    $ 3.21万
  • 项目类别:
Probing oral pathogen interactions in picoliter-scale enclosures
探讨皮升级外壳中口腔病原体的相互作用
  • 批准号:
    8651759
  • 财政年份:
    2011
  • 资助金额:
    $ 3.21万
  • 项目类别:

相似海外基金

Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
  • 批准号:
    EP/Y031067/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307222
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
  • 批准号:
    502587
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
  • 批准号:
    MR/Y013131/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
  • 批准号:
    MR/X009580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
  • 批准号:
    2340818
  • 财政年份:
    2024
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
  • 批准号:
    480022
  • 财政年份:
    2023
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
  • 批准号:
    BB/X010473/1
  • 财政年份:
    2023
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
  • 批准号:
    10670613
  • 财政年份:
    2023
  • 资助金额:
    $ 3.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了