Develop new mathematical and computational tools for modeling
开发新的建模数学和计算工具
基本信息
- 批准号:8516156
- 负责人:
- 金额:$ 30.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAlgorithmsArchitectureBiochemical ReactionBiologicalBiological ModelsBiologyCellsCommunitiesComplexComputer AnalysisCouplesDataData SetDevelopmentDiffusionEquationFaceGoalsGrowthHybridsImageIndividualLearningMechanicsMethodsModelingMorphogenesisPatternProcessReactionRegulator GenesSchemeSeriesSolutionsSpeedSystemSystems AnalysisSystems BiologyTimeWorkcomputer frameworkcomputerized toolsinsightmeetingsmodels and simulationmorphogenssimulationspatiotemporaltool
项目摘要
MATHEMATICAL AND COMPUTATIONAL TOOLS (Qing Nie, Theme Leader)
The processes and interactions dealt with in Themes A-C are all spatiotemporally dynamic, typically multiscale, and potentially subject to large stochastic effects. Quantitative mathematical and computational analysis of such systems faces substantial challenges, at least using conventional methods. For example, the efficient exploration of large parameter spaces¿necessary for model exploration¿is hindered by deficiencies in methods for fast, accurate simulation. In Aim Dia, we propose to develop new fast methods for steady state
continuum models that involve multiple spatial scales; In Aim Dib, we propose a convenient and robust computational framework with a new efficient algorithm for solving systems involving temporally evolving spatial domains - a type of continuum model especially relevant to tissue growth (e.g. in Theme B) Spatiotemporal stochastic effects pose special challenges. While non-spatial stochastic modeling and simulation has provided many recent insights into biochemical reactions, spatial stochastic methods need
much further development. In Aim D2a, we propose a new hybrid spatial model and algorithm that couples continuum stochastic partial differential equations with discrete stochastic reaction-diffusion processes; In Aim D2b, we propose a multi-scale hybrid model and algorithm that accounts for individual cells, continuum descriptions of morphogens, intracellular regulatory networks, and possible mechanical effects. The tools developed in Aim D2a can be applied to the hybrid approach in Aim D2b. These modeling frameworks will
help projects in Themes A-C explore stochastic effects more freely and efficiently than is currently possible.
A common goal in Systems Biology is to use large biological data sets to "learn" the topology and parameters of biological networks. Defining complex gene regulatory networks is particularly important for understanding systems that drive spatial phenomena, such as patterning and morphogenesis. Yet, currently, most network inference is done using perturbation-series, or time-series data, but not continuous spatial information. We propose to begin to address this deficiency by starting to develop, in Aim D3, methods for
inferring spatiotemporal models from spatiotemporal data. This approach begins with the development of a regularization framework to enable incorporation of different kinds of data into inference algorithms, and continues with development of approaches to use imaging data in network inference.
One of our major goals in the development of computational tools is robustness. To meet the need for large scale model exploration that the kinds of biology in this proposal require, we must create methods that workwell over large ranges of parameter space, initial and/or boundary conditions, and model architecture.
Although we can always expect trade-offs between computafional robustness and speed, computational frameworks that require minimal fine-tuning to the specifics of individual models are likely to be much more useful to the work in this proposal, and to the Systems Biology community in general.
数学和计算工具(聂青青,主题领袖)
主题A-C中涉及的过程和相互作用都是时空动态的,通常是多尺度的,并可能受到大的随机效应的影响。这类系统的定量数学和计算分析面临着巨大的挑战,至少使用传统方法是如此。例如,由于快速、准确的模拟方法的不足,阻碍了对模型探索所需的大参数空间的有效探索。针对这一问题,我们提出了一种新的快速稳态算法。
连续介质模型涉及多个空间尺度;在Aim DIB中,我们提出了一个方便和健壮的计算框架和一个新的高效算法来求解涉及时间演化空间域的系统--一种特别与组织生长相关的连续介质模型(例如在主题B中)时空随机效应带来了特殊的挑战。虽然非空间随机建模和模拟提供了许多关于生化反应的最新见解,但空间随机方法需要
更进一步的发展。在目标D2a中,我们提出了一个新的混合空间模型和算法,它将连续随机偏微分方程和离散随机反应扩散过程耦合起来;在目标D2B中,我们提出了一个多尺度混合模型和算法,该模型和算法考虑了单个细胞、形态原的连续描述、细胞内调节网络和可能的机械效应。在AIM D2B中开发的工具可以应用于AIM D2B中的混合方法。这些建模框架将
帮助主题A-C中的项目比目前可能的更自由、更有效地探索随机效应。
系统生物学的一个共同目标是使用大型生物数据集来“学习”生物网络的拓扑和参数。定义复杂的基因调控网络对于理解驱动空间现象的系统尤其重要,例如图案化和形态发生。然而,目前大多数网络推理都是使用扰动序列或时间序列数据进行的,而不是使用连续的空间信息。我们建议通过在目标D3中开始开发方法来解决这一不足之处
从时空数据推断时空模型。这种方法从开发正则化框架开始,以使不同类型的数据能够合并到推理算法中,并继续开发在网络推理中使用成像数据的方法。
我们开发计算工具的主要目标之一是健壮性。为了满足本提案中的生物学种类所需的大规模模型探索的需要,我们必须创建能够在大范围的参数空间、初始和/或边界条件以及模型体系结构中工作的方法。
尽管我们总是可以期待计算稳健性和速度之间的权衡,但需要对单个模型的细节进行最小微调的计算框架可能对本提案中的工作以及整个系统生物学社区更有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Nie其他文献
Qing Nie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Nie', 18)}}的其他基金
Tissue Size and Precision Control in Growing Hair Follicles
毛囊生长中的组织大小和精度控制
- 批准号:
10558684 - 财政年份:2022
- 资助金额:
$ 30.99万 - 项目类别:
Tissue Size and Precision Control in Growing Hair Follicles
毛囊生长中的组织大小和精度控制
- 批准号:
10367209 - 财政年份:2022
- 资助金额:
$ 30.99万 - 项目类别:
Dissecting single cell dynamics that coordinate neural crest migration and diversification
剖析协调神经嵴迁移和多样化的单细胞动力学
- 批准号:
10369030 - 财政年份:2021
- 资助金额:
$ 30.99万 - 项目类别:
Dissecting single cell dynamics that coordinate neural crest migration and diversification
剖析协调神经嵴迁移和多样化的单细胞动力学
- 批准号:
10186085 - 财政年份:2021
- 资助金额:
$ 30.99万 - 项目类别:
Dissecting single cell dynamics that coordinate neural crest migration and diversification
剖析协调神经嵴迁移和多样化的单细胞动力学
- 批准号:
10590577 - 财政年份:2021
- 资助金额:
$ 30.99万 - 项目类别:
Stochastic Dynamics and Noise Control in Patterning Systems
图案系统中的随机动力学和噪声控制
- 批准号:
9096165 - 财政年份:2014
- 资助金额:
$ 30.99万 - 项目类别:
Stochastic Dynamics and Noise Control in Patterning Systems
图案系统中的随机动力学和噪声控制
- 批准号:
8882483 - 财政年份:2014
- 资助金额:
$ 30.99万 - 项目类别:
Stochastic Dynamics and Noise Control in Patterning Systems
图案系统中的随机动力学和噪声控制
- 批准号:
8693252 - 财政年份:2014
- 资助金额:
$ 30.99万 - 项目类别:
Specificity and Spatial Dynamics of Cell Signaling: The*
细胞信号传导的特异性和空间动态:*
- 批准号:
6985706 - 财政年份:2005
- 资助金额:
$ 30.99万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30.99万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30.99万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30.99万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30.99万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30.99万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30.99万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30.99万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30.99万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30.99万 - 项目类别:
Research Grant