Coarse-Grained Models of Proteins
蛋白质的粗粒度模型
基本信息
- 批准号:8209105
- 负责人:
- 金额:$ 30.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAffectAmino Acid SequenceAmino AcidsBehaviorBiologicalBiologyCell physiologyCerealsCharacteristicsCommunitiesComprehensionDataDatabasesDependenceDrug DesignEnzymesEquilibriumGoalsGrantKnowledgeLeadLigandsModelingMolecularMolecular ConformationMotionMovementPathway interactionsPeptide Sequence DeterminationPoliciesProtein ConformationProtein DynamicsProteinsPublic HealthRelative (related person)ResearchRoleSamplingScienceShapesSideSimulateSolidStructural ProteinStructureThermodynamicsUnited States National Institutes of HealthVirusbasecellular imagingdensityimprovedinterestmacromoleculenetwork modelsprotein structureresearch studysimulationsingle moleculesoftware developmentstructural biologysuccessvectorweb site
项目摘要
Many aspects of protein motion can be comprehended with coarse-grained models. Our hypothesis is that
atomic detail is not required to explain many aspects of protein behavior, and this simplification can facilitate a
deeper understanding. The overall goal is to develop an understanding of how protein motions and function are
contolled by structure, why protein sequences fold to a limited set of structures, and to establish the roles of
tight packing and the shapes of proteins on their motions. In this project we will investigate the relationships
among motions, shapes, structures, interactions and levels of cooperativity. Aim I: Modeling protein
dynamics with Elastic Networks. We will use elastic network models to study how proteins restrict their
motions to the motions most essential for function. Normal mode analyses will be performed to discern these
important functional motions with high computational efficiency to develop molecular mechanisms. We will
investigate the atomic motions in active sites of enzymes to see how the large domain motions control the
atom movements. We will use elastic networks to interpret single molecule pulling experiments and predict the
order in which proteins unravel. Preliminary results show that elastic network models are applicable not only to
fluctuations around native conformations, but also to transient states arising when an external force is applied
to deform a protein and break its native contacts. These results suggest that structure controls the global
motions of proteins, even for transient states. To further verify this hypothesis we will perform more single
molecule pulling simulations, and structural analyses of transient protein conformations along folding
pathways. The major successes achieved with the elastic models rely upon having good representations of the
packing density and protein shape, which we will investigate in Aim II. Aim II: Modeling Protein Packing and
Cooperativity of Interactions. Dense packing of residues in proteins is one of their most important
characteristic features. We plan to continue our studies of internal packing. The emphasis for new potentials
will be on the relative orientations of amino acids in proteins. We will develop many-body contact potentials for
identifying native structures among decoys in threading, and also study orientational distributions within
clusters of nearby residues in proteins, using regular polyhedra such as icosahedra, or Catalan solids such as
tetrakis hexahedra. Our rationale is to use various polyhedral models to comprehend protein packing
and amino acid interactions for developing improved many-body potentials. A better understanding of
the cooperativity of interactions within proteins is extremely important because this directly influences the ways
in which proteins move and respond to forces. Both Aims are highly interconnected and will significantly
advance our knowledge of protein structure, dynamics and function.
蛋白质运动的许多方面可以通过粗粒度模型来理解。我们的假设是
原子细节不需要解释蛋白质行为的许多方面,这种简化可以促进蛋白质的结构。
更深刻的理解。总体目标是了解蛋白质的运动和功能是如何
控制的结构,为什么蛋白质序列折叠成一组有限的结构,并建立的作用,
紧密堆积和蛋白质运动的形状。在这个项目中,我们将研究
在运动、形状、结构、相互作用和合作水平之间。目的一:蛋白质建模
动态与弹性网络。我们将使用弹性网络模型来研究蛋白质如何限制其
运动到对功能最重要的运动将进行正常模式分析,
重要的功能运动与高计算效率,以发展分子机制。我们将
研究酶活性位点中的原子运动,以了解大畴运动如何控制酶的活性
原子运动我们将使用弹性网络来解释单分子拉伸实验,并预测
蛋白质分解的顺序。初步结果表明,弹性网络模型不仅适用于
天然构象周围的波动,但也适用于施加外力时产生的瞬态
使蛋白质变形并破坏其天然联系。这些结果表明,结构控制着全球
蛋白质的运动,即使是瞬态。为了进一步验证这一假设,我们将执行更多的单
分子拉伸模拟,以及蛋白质沿着折叠的瞬时构象的结构分析
途径。弹性模型取得的主要成功依赖于具有良好的表示,
包装密度和蛋白质形状,我们将在目标II中进行研究。目的二:蛋白质包装模型和
相互作用的协同性。蛋白质中残基的密集堆积是其最重要的功能之一
特征我们计划继续研究内部包装。强调新的潜力
将是蛋白质中氨基酸的相对方向。我们将开发多体接触电位,
在线程中识别诱饵之间的天然结构,并研究内部的取向分布。
蛋白质中邻近残基的簇,使用正多面体如二十面体,或加泰罗尼亚固体如
四面体我们的基本原理是使用各种多面体模型来理解蛋白质包装
和氨基酸相互作用以开发改进的多体电位。更好地了解
蛋白质内部相互作用的协同性是非常重要的,因为这直接影响到
蛋白质在其中移动并对力做出反应。这两个目标是高度相互关联的,
推进我们对蛋白质结构、动力学和功能的认识。
项目成果
期刊论文数量(74)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of protein dynamics using local-DME calculations.
- DOI:10.1504/ijbra.2011.040093
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Wu D;Smith S;Mahan H;Jernigan RL;Zhijun Wu
- 通讯作者:Zhijun Wu
Fold-specific sequence scoring improves protein sequence matching.
折叠特异性序列评分改善了蛋白质序列匹配。
- DOI:10.1186/s12859-016-1198-z
- 发表时间:2016-08-30
- 期刊:
- 影响因子:3
- 作者:Leelananda SP;Kloczkowski A;Jernigan RL
- 通讯作者:Jernigan RL
Models to Approximate the Motions of Protein Loops.
近似蛋白质环运动的模型。
- DOI:10.1021/ct1001413
- 发表时间:2010
- 期刊:
- 影响因子:5.5
- 作者:Skliros,Aris;Jernigan,RobertL;Kloczkowski,Andrzej
- 通讯作者:Kloczkowski,Andrzej
Chain dimensions and fluctuations in elastomeric networks in which the junctions alternate regularly in their functionality.
弹性体网络中的链尺寸和波动,其中连接点的功能定期交替。
- DOI:10.1063/1.3063115
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Skliros,Aris;Mark,JamesE;Kloczkowski,Andrzej
- 通讯作者:Kloczkowski,Andrzej
Equilibrium Distributions of Populations of Biological Species on Networks of Social Sites.
- DOI:10.1080/17513758.2018.1508762
- 发表时间:2019
- 期刊:
- 影响因子:2.8
- 作者:Wang M;Zhou W;Wu Z
- 通讯作者:Wu Z
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT L JERNIGAN其他文献
ROBERT L JERNIGAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT L JERNIGAN', 18)}}的其他基金
Novel Use of Genome Information to Understand Mutations
利用基因组信息来理解突变的新方法
- 批准号:
10488281 - 财政年份:2021
- 资助金额:
$ 30.8万 - 项目类别:
Novel Use of Genome Information to Understand Mutations
利用基因组信息来理解突变的新方法
- 批准号:
10303852 - 财政年份:2021
- 资助金额:
$ 30.8万 - 项目类别:
Novel Use of Genome Information to Understand Mutations
利用基因组信息来理解突变的新方法
- 批准号:
10661834 - 财政年份:2021
- 资助金额:
$ 30.8万 - 项目类别:
Modeling Ribosomal Control, Function and Assembly
核糖体控制、功能和组装建模
- 批准号:
7290378 - 财政年份:2006
- 资助金额:
$ 30.8万 - 项目类别:
Modeling Ribosomal Control, Function and Assembly
核糖体控制、功能和组装建模
- 批准号:
7486144 - 财政年份:2006
- 资助金额:
$ 30.8万 - 项目类别:
Modeling Ribosomal Control, Function and Assembly
核糖体控制、功能和组装建模
- 批准号:
7681539 - 财政年份:2006
- 资助金额:
$ 30.8万 - 项目类别:
Modeling Ribosomal Control, Function and Assembly
核糖体控制、功能和组装建模
- 批准号:
7149659 - 财政年份:2006
- 资助金额:
$ 30.8万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 30.8万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 30.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists