Mitochondrial Fission in Huntington's Disease
亨廷顿病中的线粒体裂变
基本信息
- 批准号:7558280
- 负责人:
- 金额:$ 30.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-02-01 至 2012-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAfferent NeuronsAlgorithmsApoptosisApoptoticAutopsyAutosomal Dominant Optic AtrophyBiochemistryBioenergeticsBlindnessBuffersCell DeathCellsCharcot-Marie-Tooth DiseaseChildChronicComplexCorpus striatum structureDefectDementiaDiseaseDominant-Negative MutationDropsDrug Delivery SystemsDynaminEmotionalEquilibriumEventExhibitsFilamentFundingFutureGlutamatesGlutamineGoalsGuanosine Triphosphate PhosphohydrolasesHomeostasisHumanHuntington DiseaseImageInheritedIon PumpsLeadLifeMediatingMembrane PotentialsMemoryMetabolicMitochondriaMitochondrial DNAMolecularMolecular GeneticsMotorMotor SkillsMusMutationNerve DegenerationNeurodegenerative DisordersNeuronal DysfunctionNeuronsNitric OxideOptic NerveOrganellesOuter Mitochondrial MembranePathogenesisPathway interactionsPatientsPharmacologyPlayPotential EnergyProcessProductionProteinsPublicationsReactive Oxygen SpeciesRecruitment ActivityRespirationRoleSiteSpottingsStructureSymptomsSynaptic TransmissionTaxesTechniquesTestingTimeTransgenic Micebasebrain tissuecancer cellcaregivingcostcytochrome ceffective therapyfightingfusion genehuman Huntingtin proteinimprovedinjuredmitochondrial DNA mutationmitochondrial dysfunctionmitochondrial membranemutantneuron lossneurotoxicneurotoxicitynovelpolyglutaminepreventrespiratoryrespiratory complex IItomographytransmission process
项目摘要
DESCRIPTION (provided by applicant): Huntington's disease (HD) is a hereditary neurodegenerative disorder and is caused by an abnormal polyglutamine (polyQ) expansion in the huntingtin (htt) protein, leading to progressive dementia, motor defects and psychiatric abnormalities. Presently, HD remains without cure. In HD striatal and cortical neurons die selectively by an unknown mechanism. Scientific breakthroughs are desperately needed to unravel how mutant htt causes neuronal demise. New evidence emerged indicating that mitochondrial dysfunction plays a central role in the pathogenesis underlying HD. But, exactly how mitochondria become injured in HD remains unclear. Mitochondria are dynamic organelles able to migrate, divide (undergo fission) and to fuse. Mitochondrial fission and fusion is choreographed by dynamin-related GTPases with competing activities. At normal conditions mitochondria form cable-like filaments in neurons, allowing efficient energy transmission, mixing of metabolites, Ca2+ buffering, and silencing of mtDNA mutations. Here, we will test the novel hypothesis whether persistent mitochondrial fission represents a mechanistic basis for the mitochondrial dysfunction implicated in HD pathogenesis. We will address the following questions: (1) Does mutant htt trigger continuous mitochondrial fission, which in turn results in ultrastructural damage of mitochondria, energy deficits, impaired mitochondrial respiration, ROS production, abnormal Ca2+ homeostasis, and mtDNA loss? (2) Does mutant htt recruit and activate the mitochondrial fission machinery? (3) Does mitochondrial fission play a causal role in mutant htt-induced neurodegeneration and cell death? To answer these questions we will isolate primary striatal or cortical neurons. Additionally, we will employ mutant htt transgenic mice and postmortem HD brain tissue. We will analyze them using interdisciplinary and advanced techniques including 3D timelapse imaging, EM tomography, molecular genetics, pharmacology, biochemistry, and bioenergetics. We will also develop new algorithms to quantify mitochondrial fission and mthtt aggregate formation by 3D time-lapse imaging. This study will improve our basic understanding of how mutant htt triggers neuronal demise. Results obtained here may offer a new mechanistic basis for the metabolic and mitochondrial defects underlying HD and perhaps other polyQ disease. Most importantly, this study may bring new hopes for effective treatments to conquer progressive neuron loss in HD, so patients can lead improved lives.
描述(由申请人提供):亨廷顿病(HD)是一种遗传性神经退行性疾病,由亨廷顿蛋白(htt)中的异常多聚谷氨酰胺(polyQ)扩增引起,导致进行性痴呆、运动缺陷和精神异常。目前,HD仍然无法治愈。在HD纹状体和皮质神经元死亡选择性的一个未知的机制。我们迫切需要科学上的突破来揭示htt突变体是如何导致神经元死亡的。新的证据表明,线粒体功能障碍在HD的发病机制中起着核心作用。但是,线粒体在HD中究竟是如何受损的仍不清楚。线粒体是一种动态的细胞器,能够迁移、分裂和融合。线粒体的分裂和融合是由动力蛋白相关的GTP酶与竞争活动编排的。在正常情况下,线粒体在神经元中形成索状细丝,允许有效的能量传输,代谢物的混合,Ca2+缓冲和mtDNA突变的沉默。在这里,我们将测试新的假设是否持续的线粒体分裂代表一个机制的基础上线粒体功能障碍牵连HD发病机制。我们将解决以下问题:(1)突变htt触发连续线粒体分裂,这反过来又导致线粒体超微结构损伤,能量不足,线粒体呼吸功能受损,ROS产生,异常Ca 2+稳态,和mtDNA丢失?(2)突变体htt是否招募并激活线粒体裂变机制?(3)线粒体分裂是否在突变型htt诱导的神经变性和细胞死亡中起因果作用?为了回答这些问题,我们将分离初级纹状体或皮质神经元。此外,我们将采用突变htt转基因小鼠和死后HD脑组织。我们将使用跨学科和先进的技术来分析它们,包括3D时间推移成像,EM断层扫描,分子遗传学,药理学,生物化学和生物能量学。我们还将开发新的算法,通过3D延时成像来量化线粒体分裂和线粒体聚集体的形成。这项研究将提高我们对突变htt如何触发神经元死亡的基本理解。这里获得的结果可能提供了一个新的机制基础的代谢和线粒体缺陷的基础HD和其他polyQ疾病。最重要的是,这项研究可能为有效治疗HD中进行性神经元丢失带来新的希望,因此患者可以改善生活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ella R Bossy-Wetzel其他文献
Ella R Bossy-Wetzel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ella R Bossy-Wetzel', 18)}}的其他基金
Lysine Acetylation as Switch for Optic Atrophy 1 Inactivation
赖氨酸乙酰化作为视神经萎缩 1 失活的开关
- 批准号:
9887403 - 财政年份:2020
- 资助金额:
$ 30.95万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 30.95万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 30.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 30.95万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 30.95万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 30.95万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 30.95万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 30.95万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 30.95万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 30.95万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 30.95万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




