Optimizing Tobacco Treatment for Smokers Seeking Lung Cancer Screening
为寻求肺癌筛查的吸烟者优化烟草治疗
基本信息
- 批准号:9329386
- 负责人:
- 金额:$ 18.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-09 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:AttentionConsumptionDataDiseaseElementsEnrollmentEvaluationFutureGoalsHealth BenefitHealthcareIndividualInterventionLungMalignant neoplasm of lungMethodologyMethodsModelingMorbidity - disease rateOutcomePatientsProcessPublic HealthRadiology SpecialtyRandomizedRecruitment ActivityReportingResearchResourcesSiteSmokerSmokingSmoking Cessation InterventionSystemTestingTimeTobaccoTobacco DependenceTobacco-Related CarcinomaUnited StatesVariantWithholding Treatmentauthoritycomparative effectivenesscostcost effectivedesigneffectiveness trialevidence baseevidence based guidelineshigh riskimplementation scienceincremental cost-effectivenessinnovationlung cancer screeningmortalitymotivational enhancement therapynovelprogramsscreeningsmoking cessationstandard care
项目摘要
PROJECT SUMMARY
There is a timely and urgent need to understand and leverage the context of lung cancer screening to deliver
smoking cessation treatment and promote cessation among individuals at high risk for lung and other smoking-
related diseases. The long-term goal is to maximize the public health benefits of lung cancer screening by
providing a blueprint of best practices for integrating and sustaining tobacco treatment delivery in lung cancer
screening settings. The current project will make a vital contribution by identifying superior and scalable
tobacco treatment components with relevance for current smokers seeking screening that can be cost-
effectively delivered with high implementation fidelity by heterogeneous lung cancer screening sites. The
proposed research will use an innovative methodological framework, the Multiphase Optimization Strategy
(MOST), to design an optimized, scalable evidence-based tobacco treatment package that can be readily
integrated within lung cancer screening sites. MOST involves highly efficient, randomized experimentation to
precisely quantify the effects of individual treatment components and identify synergistic effects by combining
them into an effective tobacco treatment package. This information then guides assembly of an optimized
treatment package that achieves target outcomes with minimal resource consumption and staff burden. The
rationale for the proposed research is that once an optimized tobacco treatment package is established, future
comparative effectiveness trials can examine strategies for wider implementation and dissemination in LDCT-
LCS settings. In partnership with the Lung Cancer Alliance and their National Framework for Excellence in
Lung Cancer Screening, we will identify 18 heterogeneous lung cancer screening sites across the United
States that will serve as demonstration field sites. Sixty current smokers will be recruited from each of the 18
participating screening sites (n=1,080). The findings will guide assembly of an optimized and scalable
cessation treatment package that achieves superior cessation outcomes with attention to minimizing burden in
lung cancer screening sites. This study will apply MOST to achieve the following aims: Aim 1: To use a highly
efficient MOST to identify which of four evidence-based tobacco treatment components under consideration
contribute to superior cessation endpoints. The four tobacco treatment components to be tested are: (1)
Motivational Interviewing (MI) (Yes vs. No); (2) NRT Patch (Yes vs. No); 3) NRT Lozenge (Yes vs No); and 4)
Message Framing (Gain vs Loss); Aim 2: To estimate the cost and incremental cost-effectiveness of evidence-
based tobacco treatment components, delivered alone and in combination; Aim 3: Guided by well-established
evaluation and conceptual implementation science frameworks, we will conduct a robust, mixed methods
evaluation of the implementation process and assess factors that may influence implementation and
sustainability for delivering and disseminating effective models for smoking cessation treatment in lung cancer
screening settings.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jamie S. Ostroff其他文献
PREVALENCE AND CORRELATES OF POSTOPERATIVE DYSPNEA AMONG EARLY-STAGE LUNG CANCER PATIENTS
- DOI:
10.1378/chest.132.4_meetingabstracts.656 - 发表时间:
2007-10-01 - 期刊:
- 影响因子:
- 作者:
Marc B. Feinstein;Jamie S. Ostroff;Bernard J. Park;Elliot J. Coups;Richard M. Steingart;Jack Burkhalter - 通讯作者:
Jack Burkhalter
A qualitative study of attitudes and perceptions of smoking cessation medication among patients with cancer
- DOI:
10.1007/s00520-024-09030-z - 发表时间:
2024-11-29 - 期刊:
- 影响因子:3.000
- 作者:
Jennifer Gittleman;Joanna G. Cloutier;Elyse R. Park;Autumn Rasmussen;Colin Ponzani;Andrea H. Weinberger;Jamie S. Ostroff;Giselle Perez - 通讯作者:
Giselle Perez
Dissemination and Implementation—A Primer for Accelerating “Time to Translation” in Radiation Oncology
传播与实施——加速放射肿瘤学“转化时间”的入门指南
- DOI:
10.1016/j.ijrobp.2024.11.101 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:6.500
- 作者:
Patricia Mae G. Santos;Sierra Silverwood;Gita Suneja;Eric C. Ford;Nikhil G. Thaker;Jamie S. Ostroff;Bryan J. Weiner;Erin F. Gillespie - 通讯作者:
Erin F. Gillespie
Health Behaviors of Childhood Cancer Survivors: What We’ve Learned
- DOI:
10.1007/s10880-006-9014-y - 发表时间:
2006-04-29 - 期刊:
- 影响因子:1.900
- 作者:
Jennifer S. Ford;Jamie S. Ostroff - 通讯作者:
Jamie S. Ostroff
Brief Report: Precision Language and Deletion of the “S” Word
- DOI:
10.1016/j.jtocrr.2024.100711 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Ciara Lockstadt;Mary M. Pasquinelli;Jill Feldman;Jamie L. Studts;Jamie S. Ostroff;Li Liu;Ella A. Kazerooni;Robert A. Smith;Lisa Carter-Bawa;Lawrence E. Feldman - 通讯作者:
Lawrence E. Feldman
Jamie S. Ostroff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jamie S. Ostroff', 18)}}的其他基金
Psychosocial Palliative and Community Research in Cancer
癌症的社会心理姑息治疗和社区研究
- 批准号:
9902338 - 财政年份:2019
- 资助金额:
$ 18.04万 - 项目类别:
Psychosocial Palliative and Community Research in Cancer
癌症的社会心理姑息治疗和社区研究
- 批准号:
10247460 - 财政年份:2019
- 资助金额:
$ 18.04万 - 项目类别:
Implementing A Virtual Tobacco Treatment in Community Oncology Practices
在社区肿瘤学实践中实施虚拟烟草治疗
- 批准号:
10524083 - 财政年份:2018
- 资助金额:
$ 18.04万 - 项目类别:
Organizational readiness and engagement of community oncology practices in implementing tobacco use assessment and treatment
社区肿瘤学实践在实施烟草使用评估和治疗方面的组织准备和参与
- 批准号:
10274351 - 财政年份:2018
- 资助金额:
$ 18.04万 - 项目类别:
Implementing A Virtual Tobacco Treatment in Community Oncology Practices
在社区肿瘤学实践中实施虚拟烟草治疗
- 批准号:
10558480 - 财政年份:2018
- 资助金额:
$ 18.04万 - 项目类别:
Implementing A Virtual Tobacco Treatment in Community Oncology Practices
在社区肿瘤学实践中实施虚拟烟草治疗
- 批准号:
10436140 - 财政年份:2018
- 资助金额:
$ 18.04万 - 项目类别:
Implementing A Virtual Tobacco Treatment in Community Oncology Practices
在社区肿瘤学实践中实施虚拟烟草治疗
- 批准号:
10094203 - 财政年份:2018
- 资助金额:
$ 18.04万 - 项目类别:
Tobacco Treatment Training for Cancer Care Providers
癌症护理人员烟草治疗培训
- 批准号:
10251905 - 财政年份:2017
- 资助金额:
$ 18.04万 - 项目类别:
Tobacco Treatment Training for Cancer Care Providers
癌症护理人员烟草治疗培训
- 批准号:
10628637 - 财政年份:2017
- 资助金额:
$ 18.04万 - 项目类别:
Tobacco Treatment Training for Cancer Care Providers
癌症护理人员烟草治疗培训
- 批准号:
9357183 - 财政年份:2017
- 资助金额:
$ 18.04万 - 项目类别:
相似海外基金
Understanding of Consumption Context Using User Generated Big Data
使用用户生成的大数据了解消费环境
- 批准号:
23H00859 - 财政年份:2023
- 资助金额:
$ 18.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Trustworthy ML approaches to energy consumption data
值得信赖的能源消耗数据机器学习方法
- 批准号:
10068428 - 财政年份:2023
- 资助金额:
$ 18.04万 - 项目类别:
Collaborative R&D
Inflation and Consumption in the Post-COVID Era: Empirical Analyses Based on Alternative Data
后疫情时代的通胀与消费:基于另类数据的实证分析
- 批准号:
23K12451 - 财政年份:2023
- 资助金额:
$ 18.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A scalable IoT solution utilising machine-learning to discover actionable insights to reduce energy/resource consumption utilising manufacturing process data.
可扩展的物联网解决方案,利用机器学习来发现可行的见解,从而利用制造过程数据来减少能源/资源消耗。
- 批准号:
10029064 - 财政年份:2022
- 资助金额:
$ 18.04万 - 项目类别:
Collaborative R&D
A scalable digital twin employing machine-learning to discover actionable insights to reduce emissions/resource consumption utilising shared portside data. (Portunus)
可扩展的数字孪生采用机器学习来发现可行的见解,以利用共享的港口数据减少排放/资源消耗。
- 批准号:
10043739 - 财政年份:2022
- 资助金额:
$ 18.04万 - 项目类别:
Grant for R&D
Data-driven Thermal Management of Electric/Hybrid Vehicles for Optimum Energy Consumption
数据驱动的电动/混合动力汽车热管理以实现最佳能源消耗
- 批准号:
2683123 - 财政年份:2022
- 资助金额:
$ 18.04万 - 项目类别:
Studentship
Digital Twin: innovative methods for the integration, analysis and consumption of multisensory data in Tactile Internet
数字孪生:触觉互联网中多感官数据集成、分析和消费的创新方法
- 批准号:
RGPIN-2018-05600 - 财政年份:2022
- 资助金额:
$ 18.04万 - 项目类别:
Discovery Grants Program - Individual
Utilizing novel data sets and prediction methods to better identify and engage with customers in vulnerable circumstances and encourage sustainable water consumption in the residential sector
利用新颖的数据集和预测方法更好地识别和吸引处于弱势的客户,并鼓励住宅领域的可持续用水
- 批准号:
10008785 - 财政年份:2021
- 资助金额:
$ 18.04万 - 项目类别:
Feasibility Studies
Big Data Approaches to Software Energy Consumption Modeling
软件能耗建模的大数据方法
- 批准号:
RGPIN-2017-05609 - 财政年份:2021
- 资助金额:
$ 18.04万 - 项目类别:
Discovery Grants Program - Individual
Digital Twin: innovative methods for the integration, analysis and consumption of multisensory data in Tactile Internet
数字孪生:触觉互联网中多感官数据集成、分析和消费的创新方法
- 批准号:
RGPIN-2018-05600 - 财政年份:2021
- 资助金额:
$ 18.04万 - 项目类别:
Discovery Grants Program - Individual