Cholesterol Regulation of Endothelial K+ Channels
内皮 K 通道的胆固醇调节
基本信息
- 批准号:9263758
- 负责人:
- 金额:$ 42.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-04-01 至 2020-10-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelAntiatherogenicApoE knockout mouseApolipoprotein EArteriesAtherosclerosisBindingBinding SitesBiochemicalBiological AssayBiophysicsBiopsyBlood VesselsBlood flowCardiovascular DiseasesCellsCessation of lifeCholesterolCrossbreedingDataDevelopmentDominant-Negative MutationDown-RegulationDyslipidemiasEndothelial CellsEndotheliumEnvironmentEventFamily suidaeFatty acid glycerol estersFunctional disorderFundingGoalsGrantHigh Density LipoproteinsHumanImpairmentIon ChannelKnockout MiceLipoproteinsLow-Density LipoproteinsMediatingMembraneModelingMolecularMorbidity - disease rateMotionMusMutationPatientsPlasmaPlayPotassium ChannelProductionRegulationResistanceRisk FactorsRoleSite-Directed MutagenesisSterolsTechniquesTestingThinnessTissuesTransmembrane DomainVasodilationWomanendothelial dysfunctionhemodynamicshypercholesterolemiain vivoinsightinward rectifier potassium channelmenmolecular dynamicsmouse modelnovel therapeutic interventionoxidized low density lipoproteinpreventpublic health relevancesensorsubcutaneoustrafficking
项目摘要
DESCRIPTION (provided by applicant): Dyslipidemia-induced endothelial dysfunction is known to play a major role in the initiation of atherosclerosis. Our studies discovered that plasma hypercholesterolemia results in suppression of endothelial inwardly-rectifying K+ (Kir) channels, one of the major endothelial ion channels and a flow sensor. Our long term goal is to elucidate the mechanisms responsible for cholesterol-induced regulation of endothelial ion channels and determine the contribution of these mechanisms to endothelial dysfunction. During the two previous funding periods of this grant, we have provided the first mechanistic insights into cholesterol-induced suppression of Kir channels and demonstrated that it correlates with an impairment of flow-induced vasodilatation in vivo. In the current proposal, we extend these studies to address three new goals: In Aim 1, we elucidate further the molecular basis of cholesterol-induced suppression of Kir channels specifically focusing on identifying putative cholesterol binding sites and determining how cholesterol binding regulates channel gating. To achieve this goal, we will use a combination of Molecular Dynamics simulations, a state-of-the-art computational approach, with site-directed mutagenesis, and biophysical and biochemical approaches to determine the impact of these mutations on cholesterol sensitivity of Kir channels and on cholesterol-Kir binding. The analysis will be done for an array of different sterols that differ in their ability to bind to the channels and/or affect channel function. In Aim 2, we will extend our studies to determine the sensitivity of endothelial Kir channels to pro- and anti-atherogenic lipoprotein profiles and hemodynamic environments and test the impact of cholesterol-induced suppression of endothelial Kir channels on the imbalance between NO and ROS production. Specifically, we will test the hypothesis that Kir channels are suppressed by pro-atherogenic lipoproteins (LDL, oxLDL) and flow environment (disturbed flow) and rescued by anti-atherogenic lipoproteins (HDL) and laminar unidirectional flow. Furthermore, we will address the hypothesis that suppression of endothelial Kir results in the inhibition of NO release and increase in ROS production and that this mechanism contributes significantly to endothelial dysfunction. Finally, in Aim 3, we will test the hypothesis that cholesterol-induced suppression of
Kir channels plays a major role in the impairment of flow-induced vasodilatation in isolated arteries, a hallmark of endothelial dysfunction. Specifically, we will first test the role of Kir channels in endothelial dysfunction in ApoE-/- knockout mice, one of the well-established animal models of atherosclerosis and then we will extend our studies to human arteries isolated from biopsies obtained from patients with pro (high LDL) and anti (high HDL)- atherogenic lipoprotein profiles. Molecular techniques will be employed in human arterial tissue to determine the mechanism of Kir channels contribution to flow induced vasodilatation a critical endothelium- dependent mechanism of blood flow regulation. We believe that taken together, these studies will make a significant contribution to the understanding of cholesterol regulation of ion channels
and dyslipidemia- induced endothelial dysfunction.
描述(由申请人提供):已知血脂异常引起的内皮功能障碍在动脉粥样硬化的启动中起主要作用。我们的研究发现,血浆高胆固醇血症导致内皮细胞内向整流钾通道(KIR)的抑制,KIR通道是主要的内皮离子通道之一,也是流量传感器。我们的长期目标是阐明胆固醇诱导内皮细胞离子通道调节的机制,并确定这些机制在内皮功能障碍中的作用。在这笔赠款的前两个资助期,我们首次提供了对胆固醇诱导的KIR通道抑制的机械性见解,并证明了它与体内血流诱导的血管扩张受损有关。在目前的提案中,我们将这些研究扩展到三个新的目标:在目标1中,我们进一步阐明了胆固醇诱导抑制KIR通道的分子基础,特别是集中在识别可能的胆固醇结合部位和确定胆固醇结合如何调节通道门控。为了实现这一目标,我们将结合使用分子动力学模拟、最先进的计算方法和定点突变,以及生物物理和生化方法来确定这些突变对KIR通道的胆固醇敏感性和胆固醇-KIR结合的影响。将对不同的甾醇阵列进行分析,这些不同的甾醇在与通道结合和/或影响通道功能的能力上不同。在目标2中,我们将扩大我们的研究范围,以确定内皮KIR通道对促动脉粥样硬化和抗动脉粥样硬化的脂蛋白谱和血流动力学环境的敏感性,并测试胆固醇诱导的内皮KIR通道抑制对NO和ROS产生失衡的影响。具体地说,我们将检验KIR通道被促动脉粥样硬化的脂蛋白(LDL,oxLDL)和流动环境(扰乱的流动)抑制,并被抗动脉粥样硬化的脂蛋白(HDL)和层流单向流动所拯救的假设。此外,我们将解释这样的假设,即抑制内皮KIR导致NO释放的抑制和ROS产生的增加,并且这一机制显著地促进了内皮功能障碍。最后,在目标3中,我们将检验这样一种假设,即胆固醇诱导的抑制
KIR通道在血流诱导的血管扩张的损伤中起主要作用,而血流诱导的血管扩张是内皮功能障碍的标志。具体地说,我们将首先测试KIR通道在ApoE/-基因敲除小鼠内皮细胞功能障碍中的作用,ApoE/-基因敲除小鼠是公认的动脉粥样硬化的动物模型之一,然后我们将把研究扩展到从高密度脂蛋白血症患者(高密度脂蛋白)和高密度脂蛋白血症患者的活检中分离出的人动脉。分子技术将在人体动脉组织中被用来确定KIR通道在血流诱导的血管扩张中的作用机制,这是血流调节的关键的内皮依赖机制。我们相信,这些研究将对理解胆固醇对离子通道的调节做出重大贡献。
和血脂异常引起的内皮功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Eddington其他文献
David Eddington的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Eddington', 18)}}的其他基金
Macrorecombination in isolated cell pairs via natural genetic transformation
通过自然遗传转化在分离的细胞对中进行宏重组
- 批准号:
10408835 - 财政年份:2021
- 资助金额:
$ 42.36万 - 项目类别:
Macrorecombination in isolated cell pairs via natural genetic transformation
通过自然遗传转化在分离的细胞对中进行宏重组
- 批准号:
10291368 - 财政年份:2021
- 资助金额:
$ 42.36万 - 项目类别:
Macrorecombination in isolated cell pairs via natural genetic transformation
通过自然遗传转化在分离的细胞对中进行宏重组
- 批准号:
10609526 - 财政年份:2021
- 资助金额:
$ 42.36万 - 项目类别:
Confined Genetic Transformation and Exchange of Antibiotic Resistance Genes in Femtoliter Microdroplets
飞升微滴中抗生素抗性基因的有限遗传转化和交换
- 批准号:
9369924 - 财政年份:2017
- 资助金额:
$ 42.36万 - 项目类别:
microBSD:Spatiotemporal control of neurochemical tone in the brain slice using mi
microBSD:使用 mi 对脑切片中的神经化学音调进行时空控制
- 批准号:
7835750 - 财政年份:2009
- 资助金额:
$ 42.36万 - 项目类别:
Probing Combinatorial Hepatocellular Microenvironments
探索组合肝细胞微环境
- 批准号:
6994097 - 财政年份:2005
- 资助金额:
$ 42.36万 - 项目类别:
Probing Combinatorial Hepatocellular Microenvironments
探索组合肝细胞微环境
- 批准号:
7136290 - 财政年份:2005
- 资助金额:
$ 42.36万 - 项目类别:
Cholesterol Regulation of Endothelial K+ Channels
内皮 K 通道的胆固醇调节
- 批准号:
9060393 - 财政年份:2004
- 资助金额:
$ 42.36万 - 项目类别:
Cholesterol Regulation of Endothelial K+ Channels
内皮 K 通道的胆固醇调节
- 批准号:
8721685 - 财政年份:2004
- 资助金额:
$ 42.36万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 42.36万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别:
Studentship














{{item.name}}会员




