Iterative Image reconstruction for high-resolution PET imaging

高分辨率 PET 成像的迭代图像重建

基本信息

  • 批准号:
    7586255
  • 负责人:
  • 金额:
    $ 19.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-04-01 至 2011-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Iterative reconstruction algorithms that significantly improve image quality over filtered backprojection methods have been developed for emission tomography. However, most current reconstruction algorithms implicitly assume that the system model is exact. The daunting computational challenge associated with the direct use of an exact system model in each forward and back projection has often led people to adopt less accurate models. This results in increased noise and reduced resolution in reconstructed images, because the effect of the modeling error cannot be corrected in the existing methods. The goal of this grant is to develop a new class of iterative reconstruction methods that can compensate the effect of modeling error. The work is based on our thorough analysis of error propagation from each component in the system model into reconstructed images. The innovation of the new method is that it does not require an exact system model in every forward and back projection. The method can obtain high-resolution images when direct use of an accurate system model in the iterative reconstruction is impractical, and it can also reduce reconstruction time by using simplified fast forward and back projectors without sacrificing image quality. We will first develop the theory of high-resolution iterative image reconstruction with error correction capability. Then we will focus on the application and validation of the theory in positron emission tomography (PET). We will implement new reconstruction algorithms on microPET scanners, and will evaluate the lesion detection and quantitation performance using Monte Carlo simulations, physical phantom experiments, and real animal data. We believe that the new algorithms will provide high-resolution images and accurate quantitative information for understanding human diseases in small animal models. Upon success, we will extend the reconstruction algorithm to clinical imaging systems and will also apply the theory to other imaging modalities, such as X-ray CT, SPECT, MRI, and optical tomography. Lay abstract: Positron emission tomography (PET) is a functional imaging modality that is widely used in clinical and biological studies. This project will develop a novel image reconstruction method for PET which will provide high-resolution images and accurate quantitative information for understanding and treating human diseases.
描述(由申请人提供):已开发出用于发射断层摄影的迭代重建算法,其相对于滤波反投影方法显著提高了图像质量。然而,大多数当前的重建算法隐含地假设系统模型是精确的。在每个前向和后向投影中直接使用精确的系统模型所带来的令人生畏的计算挑战往往导致人们采用不太精确的模型。这导致重建图像中的噪声增加和分辨率降低,因为在现有方法中不能校正建模误差的影响。这项资助的目标是开发一类新的迭代重建方法,可以补偿建模误差的影响。这项工作是基于我们的深入分析,从系统模型中的每个组件到重建图像的误差传播。新方法的创新之处在于,它不需要在每一个前向和后向投影精确的系统模型。当在迭代重建中直接使用精确的系统模型不切实际时,该方法可以获得高分辨率的图像,并且它还可以通过使用简化的快速正向投影仪和反向投影仪来减少重建时间而不牺牲图像质量。我们将首先发展具有误差校正能力的高分辨率迭代图像重建的理论。然后,我们将集中在应用和验证的理论在正电子发射断层扫描(PET)。我们将在microPET扫描仪上实施新的重建算法,并将使用Monte Carlo模拟、物理体模实验和真实的动物数据来评估病变检测和定量性能。我们相信,新算法将提供高分辨率的图像和准确的定量信息,以了解小动物模型中的人类疾病。一旦成功,我们将重建算法扩展到临床成像系统,也将应用该理论的其他成像方式,如X射线CT,SPECT,MRI和光学断层扫描。摘要:正电子发射断层扫描(PET)是一种功能成像方式,广泛用于临床和生物学研究。本计画将开发一种新的PET影像重建方法,提供高解析度的影像及精确的量化资讯,以了解及治疗人类疾病。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Iterative reconstruction of Fourier-rebinned PET data using sinogram blurring function estimated from point source scans.
使用从点源扫描估计的正弦图模糊函数迭代重建傅立叶重组 PET 数据。
  • DOI:
    10.1118/1.3490711
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Tohme,MichelS;Qi,Jinyi
  • 通讯作者:
    Qi,Jinyi
Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements.
  • DOI:
    10.1088/0031-9155/54/12/007
  • 发表时间:
    2009-06-21
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Tohme MS;Qi J
  • 通讯作者:
    Qi J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JINYI QI其他文献

JINYI QI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JINYI QI', 18)}}的其他基金

TRD3: Data Analytics and Intelligent Systems (AI-ML-DL-Visualization)
TRD3:数据分析和智能系统(AI-ML-DL-可视化)
  • 批准号:
    10649478
  • 财政年份:
    2022
  • 资助金额:
    $ 19.72万
  • 项目类别:
TRD3: Data Analytics and Intelligent Systems (AI-ML-DL-Visualization)
TRD3:数据分析和智能系统(AI-ML-DL-可视化)
  • 批准号:
    10424949
  • 财政年份:
    2022
  • 资助金额:
    $ 19.72万
  • 项目类别:
Positronium lifetime imaging using TOF PET
使用 TOF PET 进行正电子寿命成像
  • 批准号:
    10288242
  • 财政年份:
    2021
  • 资助金额:
    $ 19.72万
  • 项目类别:
Positronium lifetime imaging using TOF PET
使用 TOF PET 进行正电子寿命成像
  • 批准号:
    10443873
  • 财政年份:
    2021
  • 资助金额:
    $ 19.72万
  • 项目类别:
Synergistic integration of deep learning and regularized image reconstruction for positron emission tomography
深度学习与正电子发射断层扫描正则化图像重建的协同集成
  • 批准号:
    9586688
  • 财政年份:
    2018
  • 资助金额:
    $ 19.72万
  • 项目类别:
Synergistic integration of deep learning and regularized image reconstruction for positron emission tomography
深度学习与正电子发射断层扫描正则化图像重建的协同集成
  • 批准号:
    9752639
  • 财政年份:
    2018
  • 资助金额:
    $ 19.72万
  • 项目类别:
Iterative Image reconstruction for high-resolution PET imaging
高分辨率 PET 成像的迭代图像重建
  • 批准号:
    7383846
  • 财政年份:
    2007
  • 资助金额:
    $ 19.72万
  • 项目类别:
Iterative Image reconstruction for high-resolution PET imaging
高分辨率 PET 成像的迭代图像重建
  • 批准号:
    7265565
  • 财政年份:
    2007
  • 资助金额:
    $ 19.72万
  • 项目类别:
Optimization of PET Imaging
PET 成像的优化
  • 批准号:
    8313653
  • 财政年份:
    2003
  • 资助金额:
    $ 19.72万
  • 项目类别:
Optimization of PET Imaging
PET 成像的优化
  • 批准号:
    6611945
  • 财政年份:
    2003
  • 资助金额:
    $ 19.72万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了