Non-Parametric Bayesian Methods for Causal Inference
用于因果推理的非参数贝叶斯方法
基本信息
- 批准号:9735635
- 负责人:
- 金额:$ 25.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): The overarching goal of this project is to develop Bayesian non-parametric (BNP) methods for estimating causal effects from complex data. We focus on two broad areas: survival analysis with time-varying treatments and mediation. For survival outcomes, we develop BNP methods for estimating causal parameters from structural nested failure time models, both for discrete and continuous-time problems. Likelihood-based methods have generally not been implemented for these models, because it would require many parametric modeling assumptions. Our BNP approach should provide greater flexibility than parametric models, while maintaining computational advantages. We will develop these methods for a wide array of scenarios (e.g., multinomial or continuous-valued treatment, known or unknown censoring times) and develop sensitivity analysis methods and informative priors related to untestable assumptions. For causal mediation analysis, we will extend our previous work in a variety of ways. Most importantly, we will weaken identifying assumptions with the inclusion of covariates in the models. In addition, we will generalize to a wider variety of outcomes and types of mediation (e.g. longitudinal or multiple mediators). We will also develop methods for handling non-ignorable dropout in settings with mediation. Our methods have broad applications, and we will utilize them to draw novel clinical inference from several behavioral intervention trials and from a study on the hepatic safety of classes of antiretroviral medications
描述(由申请人提供):该项目的总体目标是开发贝叶斯非参数(BNP)方法,用于从复杂数据中估计因果效应。我们专注于两个广泛的领域:随时间变化的治疗和调解的生存分析。对于生存结果,我们开发BNP方法估计因果参数的结构嵌套故障时间模型,离散和连续时间的问题。基于似然性的方法通常不适用于这些模型,因为它需要许多参数建模假设。我们的BNP方法应该提供比参数模型更大的灵活性,同时保持计算优势。我们将为各种场景开发这些方法(例如,多项式或连续值处理,已知或未知的删失时间),并开发敏感性分析方法和与不可检验的假设相关的信息先验。对于因果中介分析,我们将以各种方式扩展我们以前的工作。最重要的是,我们将通过在模型中纳入协变量来削弱识别假设。此外,我们将归纳到更广泛的结果和调解类型(例如纵向或多个调解人)。我们还将开发在调解环境中处理不可忽视的辍学的方法。我们的方法具有广泛的应用,我们将利用它们从几个行为干预试验和一项关于抗逆转录病毒药物的肝脏安全性的研究中得出新的临床推断
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nested g-computation: A causal approach to analysis of censored medical costs in the presence of time-varying treatment.
- DOI:10.1111/rssc.12441
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Spieker AJ;Ko EM;Roy JA;Mitra N
- 通讯作者:Mitra N
A Bayesian nonparametric model for zero-inflated outcomes: Prediction, clustering, and causal estimation.
零膨胀结果的贝叶斯非参数模型:预测、聚类和因果估计。
- DOI:10.1111/biom.13244
- 发表时间:2021
- 期刊:
- 影响因子:1.9
- 作者:Oganisian,Arman;Mitra,Nandita;Roy,JasonA
- 通讯作者:Roy,JasonA
Net benefit separation and the determination curve: A probabilistic framework for cost-effectiveness estimation.
- DOI:10.1177/0962280221995972
- 发表时间:2021-05
- 期刊:
- 影响因子:2.3
- 作者:Spieker AJ;Illenberger N;Roy JA;Mitra N
- 通讯作者:Mitra N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JASON A ROY其他文献
JASON A ROY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JASON A ROY', 18)}}的其他基金
Non-Parametric Bayesian Methods for Causal Inference
用于因果推理的非参数贝叶斯方法
- 批准号:
9328106 - 财政年份:2014
- 资助金额:
$ 25.3万 - 项目类别:
Non-Parametric Bayesian Methods for Causal Inference
用于因果推理的非参数贝叶斯方法
- 批准号:
8751341 - 财政年份:2014
- 资助金额:
$ 25.3万 - 项目类别:
Non-Parametric Bayesian Methods for Causal Inference
用于因果推理的非参数贝叶斯方法
- 批准号:
8925116 - 财政年份:2014
- 资助金额:
$ 25.3万 - 项目类别:
Non-Parametric Bayesian Methods for Causal Inference
用于因果推理的非参数贝叶斯方法
- 批准号:
9111987 - 财政年份:2014
- 资助金额:
$ 25.3万 - 项目类别:
相似海外基金
Time-sensitive non-parametric Bayesian approaches for events modeling, recognition and prediction
用于事件建模、识别和预测的时间敏感非参数贝叶斯方法
- 批准号:
RGPIN-2017-06656 - 财政年份:2022
- 资助金额:
$ 25.3万 - 项目类别:
Discovery Grants Program - Individual
Statistics for Stars and Galaxies: techniques for non-parametric time series analysis and Bayesian inference in astronomy
恒星和星系的统计:天文学中的非参数时间序列分析和贝叶斯推理技术
- 批准号:
RGPIN-2020-04554 - 财政年份:2022
- 资助金额:
$ 25.3万 - 项目类别:
Discovery Grants Program - Individual
Statistics for Stars and Galaxies: techniques for non-parametric time series analysis and Bayesian inference in astronomy
恒星和星系的统计:天文学中的非参数时间序列分析和贝叶斯推理技术
- 批准号:
RGPIN-2020-04554 - 财政年份:2021
- 资助金额:
$ 25.3万 - 项目类别:
Discovery Grants Program - Individual
Time-sensitive non-parametric Bayesian approaches for events modeling, recognition and prediction
用于事件建模、识别和预测的时间敏感非参数贝叶斯方法
- 批准号:
RGPIN-2017-06656 - 财政年份:2021
- 资助金额:
$ 25.3万 - 项目类别:
Discovery Grants Program - Individual
Time-sensitive non-parametric Bayesian approaches for events modeling, recognition and prediction
用于事件建模、识别和预测的时间敏感非参数贝叶斯方法
- 批准号:
RGPIN-2017-06656 - 财政年份:2020
- 资助金额:
$ 25.3万 - 项目类别:
Discovery Grants Program - Individual
Statistics for Stars and Galaxies: techniques for non-parametric time series analysis and Bayesian inference in astronomy
恒星和星系的统计:天文学中的非参数时间序列分析和贝叶斯推理技术
- 批准号:
DGECR-2020-00202 - 财政年份:2020
- 资助金额:
$ 25.3万 - 项目类别:
Discovery Launch Supplement
Statistics for Stars and Galaxies: techniques for non-parametric time series analysis and Bayesian inference in astronomy
恒星和星系的统计:天文学中的非参数时间序列分析和贝叶斯推理技术
- 批准号:
RGPIN-2020-04554 - 财政年份:2020
- 资助金额:
$ 25.3万 - 项目类别:
Discovery Grants Program - Individual
Bayesian non-parametric design of experiments
贝叶斯非参数实验设计
- 批准号:
2459952 - 财政年份:2020
- 资助金额:
$ 25.3万 - 项目类别:
Studentship
Time-sensitive non-parametric Bayesian approaches for events modeling, recognition and prediction
用于事件建模、识别和预测的时间敏感非参数贝叶斯方法
- 批准号:
RGPIN-2017-06656 - 财政年份:2019
- 资助金额:
$ 25.3万 - 项目类别:
Discovery Grants Program - Individual
Extending Bayesian non-parametric models for cancer genomics
扩展癌症基因组学的贝叶斯非参数模型
- 批准号:
541230-2019 - 财政年份:2019
- 资助金额:
$ 25.3万 - 项目类别:
University Undergraduate Student Research Awards