Non-Parametric Bayesian Methods for Causal Inference
用于因果推理的非参数贝叶斯方法
基本信息
- 批准号:8751341
- 负责人:
- 金额:$ 35.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-10 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdoptionAffectAgingAlgorithmsAnti-Retroviral AgentsAreaBayesian MethodBehavior TherapyBehavioralBehavioral ResearchCategoriesChronic Hepatitis CClinicalClinical ResearchCodeCohort StudiesComparative StudyComplexComputer softwareDataDevelopmentDocumentationDropoutEvaluationFailureFutureGoalsHIVHealthHepaticHepatitis C virusInternetInterventionIntervention TrialJournalsLeadLiteratureMediatingMediationMediator of activation proteinMethodsModelingNatureObservational StudyOutcomePatientsPerformancePharmaceutical PreparationsPopulationPublishingReproducibilityResearchResearch PersonnelRiskSafetySamplingSpecific qualifier valueStatistical MethodsSurvival AnalysisTimeUncertaintyVeteransWeight maintenance regimenWorkbaseclinically relevantcomparative effectivenessfallsflexibilityinterestmethod developmentnon-compliancenovelnovel strategiesopen sourcerandomized trialresearch studysimulationsmoking cessationsoundtreatment strategyweb site
项目摘要
PROJECT SUMMARY
The overarching goal of this project is to develop Bayesian non-parametric (BNP) methods for estimating causal effects from
complex data. We focus on two broad areas: survival analysis with time-varying treatments and mediation. For survival
outcomes, we develop BNP methods for estimating causal parameters from structural nested failure time models, both for
discrete and continuous-time problems. Likelihood-based methods have generally not been implemented for these models,
because it would require many parametric modeling assumptions. Our BNP approach should provide greater flexibility
than parametric models, while maintaining computational advantages. We will develop these methods for a wide array of
scenarios (e.g., multinomial or continuous-valued treatment, known or unknown censoring times) and develop sensitivity
analysis methods and informative priors related to untestable assumptions. For causal mediation analysis, we will extend
our previous work in a variety of ways. Most importantly, we will weaken identifying assumptions with the inclusion
of covariates in the models. In addition, we will generalize to a wider variety of outcomes and types of mediation (e.g.
longitudinal or multiple mediators). We will also develop methods for handling non-ignorable dropout in settings with
mediation. Our methods have broad applications, and we will utilize them to draw novel clinical inference from several
behavioral intervention trials, and from a study on the hepatic safety of classes of antiretroviral medications.
项目摘要
该项目的总体目标是开发贝叶斯非参数(BNP)方法,用于估计以下因素的因果效应:
复杂数据我们专注于两个广泛的领域:随时间变化的治疗和调解的生存分析。为生存
结果,我们开发了BNP方法来估计结构嵌套失效时间模型的因果参数,无论是对于
离散和连续时间问题。基于可能性的方法通常没有被实现用于这些模型,
因为它需要许多参数建模假设。我们的BNP方法应提供更大的灵活性
而不是参数模型,同时保持计算优势。我们将开发这些方法,
场景(例如,多项式或连续值处理,已知或未知的截尾时间)并提高灵敏度
分析方法和与不可检验的假设相关的信息先验。对于因果中介分析,我们将扩展
我们以前的工作以各种方式。最重要的是,我们将削弱识别假设,
模型中的协变量。此外,我们将归纳到更广泛的结果和调解类型(例如,
纵向或多个介质)。我们还将开发处理设置中不可识别的辍学的方法,
调解我们的方法具有广泛的应用,我们将利用它们从几个方面得出新的临床推断。
行为干预试验,以及抗逆转录病毒药物的肝脏安全性研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JASON A ROY其他文献
JASON A ROY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JASON A ROY', 18)}}的其他基金
Non-Parametric Bayesian Methods for Causal Inference
用于因果推理的非参数贝叶斯方法
- 批准号:
9735635 - 财政年份:2018
- 资助金额:
$ 35.79万 - 项目类别:
Non-Parametric Bayesian Methods for Causal Inference
用于因果推理的非参数贝叶斯方法
- 批准号:
9328106 - 财政年份:2014
- 资助金额:
$ 35.79万 - 项目类别:
Non-Parametric Bayesian Methods for Causal Inference
用于因果推理的非参数贝叶斯方法
- 批准号:
8925116 - 财政年份:2014
- 资助金额:
$ 35.79万 - 项目类别:
Non-Parametric Bayesian Methods for Causal Inference
用于因果推理的非参数贝叶斯方法
- 批准号:
9111987 - 财政年份:2014
- 资助金额:
$ 35.79万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 35.79万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 35.79万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 35.79万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 35.79万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 35.79万 - 项目类别:
Standard Grant