CRCNS: Network mechanisms of the learning and encoding of timed motor responses
CRCNS:定时运动反应学习和编码的网络机制
基本信息
- 批准号:9306222
- 负责人:
- 金额:$ 29.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsAreaAxonBehaviorBehavioralBehavioral trialBiological Neural NetworksBrainBrain regionCodeCollectionComplexComputational TechniqueComputer SimulationComputing MethodologiesCorpus striatum structureCuesDataData AnalysesData SetElectrophysiology (science)EngineeringEnvironmentEventEvolutionExhibitsFutureGoalsHeadLearningLinear ModelsLinkMachine LearningMedialMental disordersMotorMotor ActivityMusNeural Network SimulationNeuronsOutputPatternPrefrontal CortexProcessRecurrenceRewardsStimulusStructureTechniquesTimeTrainingUncertaintyWorkanalytical methodawakebasebehavioral responsebehavioral studycomputer frameworkconditioningdriving forcedynamic systemin vivoinnovationmillisecondnervous system disordernetwork modelsneural circuitneural patterningnoveloptogeneticspressurerelating to nervous systemresponsespatiotemporaltemporal measurement
项目摘要
The brain is an inherently dynamic system, it evolved under strong selective pressures to allow animals to
interact with the environment in real-time, and predict and prepare for future events. For these reasons,
understanding neural dynamics, and how the brain tells and encodes time is fundamental to understanding
brain function. The importance of neural dynamics and timing to brain function emphasizes the need for
techniques that allow for the collection and analysis of massively parallel single neuron recordings across
multiple structures in behaving animals. This project will combine novel electrophysiological, behavioral,
analytical and computational methods to reverse engineer the neural circuits underlying learning and timing.
The first aim is to combine large-scale neural recordings with computational approaches to determine how
time is represented in the striatum and prefrontal cortex, two interacting brain areas that are closely
implicated in temporal processing. We will specifically examine whether encoding of time relies on absolute,
relative, or stimulus-specific coding mechanisms. Recordings will be carried out in awake, head-fixed mice
trained on a classical trace reward conditioning task in which two cues predict reward with a different delay
period. When animals learn the cue-reward association, they engage in robust anticipatory licking that
precedes the reward presentation; moreover, the timing of this behavior is dependent on the cue-reward
delay time. The second aim is to combine electrophysiology and optogenetics to determine if temporal
coding in the striatum and prefrontal cortex is perturbed by transiently disrupting network activity. The
hypothesis is that if dynamics of the timing circuits are perturbed then the ensuing activity patterns will be
irreversibly altered, thus reducing the accuracy or precision of timed behavioral responses. The third aim is
to develop a novel computational framework based on recurrent neural networks models that can predict
"future" patterns of neural ensemble activity based on "present" patterns. The ultimate goal of this work is to
integrate highly innovative electrophysiological and computational methods for reverse engineering brain
circuit function at the level of networks of hundreds of neurons in the striatum and prefrontal cortex.
RELEVANCE (See instructions):
Learning to produce appropriately timed actions is fundamental to many aspects of behavior, and disruption
of the brain circuits underlying this process is implicated in many neurological and psychiatric disorders. This
project will develop an integrated approach to studying the mechanisms of timed motor behavior by
combining large-scale neural recordings from multiple brain areas and computational modeling of neural
networks.
大脑是一个天生的动态系统,它在强大的选择压力下进化,允许动物
与环境实时互动,并预测和准备未来的事件。出于这些原因,
了解神经动力学,以及大脑如何告诉和编码时间,是理解
大脑功能。神经动力学和时序对大脑功能的重要性强调了
允许收集和分析大规模并行的单个神经元记录的技术
动物行为中的多重结构。该项目将结合新颖的电生理学、行为学、
分析和计算方法,以逆向工程的神经电路潜在的学习和时间。
第一个目标是将大规模神经记录与计算方法相结合,以确定如何
时间代表在纹状体和前额叶皮质,这两个相互作用的大脑区域密切相关
与时间处理有关。我们将具体研究时间的编码是否依赖于绝对,
相对的,或刺激特定的编码机制。录音将在清醒的头部固定的小鼠身上进行
在经典的跟踪奖赏条件反射任务中接受训练,其中两个线索预测奖赏的延迟不同
句号。当动物学习到线索-奖赏联系时,它们会进行强有力的预期舔食
在奖赏呈现之前;此外,这种行为的时机取决于提示-奖赏
延迟时间。第二个目标是结合电生理学和光遗传学来确定
纹状体和前额叶皮质的编码会被短暂的网络活动干扰。这个
假设是,如果计时电路的动力学被扰动,那么随后的活动模式将是
不可逆的改变,从而降低了定时行为反应的准确性或精确度。第三个目标是
开发一种基于递归神经网络模型的新计算框架,可以预测
基于“现在”模式的神经集合活动的“未来”模式。这项工作的最终目标是
集成高度创新的电生理和计算方法用于逆向工程脑
回路在纹状体和前额叶皮质数百个神经元的网络水平上起作用。
相关性(请参阅说明):
学会采取适当时机的行动是行为和颠覆的许多方面的基础
这一过程背后的大脑回路与许多神经和精神障碍有关。这
该项目将开发一种综合的方法来研究定时运动行为的机制,方法是
结合来自多个脑区的大规模神经记录和神经计算模型
网络。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEAN V BUONOMANO其他文献
DEAN V BUONOMANO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEAN V BUONOMANO', 18)}}的其他基金
Multiplexing working memory and timing: Encoding retrospective and prospective information in transient neural trajectories.
复用工作记忆和计时:在瞬态神经轨迹中编码回顾性和前瞻性信息。
- 批准号:
10841182 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
CRCNS: Multiple clocks for the encoding of time in corticostriatal circuits
CRCNS:皮质纹状体电路中时间编码的多个时钟
- 批准号:
10396146 - 财政年份:2021
- 资助金额:
$ 29.73万 - 项目类别:
CRCNS: Multiple clocks for the encoding of time in corticostriatal circuits
CRCNS:皮质纹状体电路中时间编码的多个时钟
- 批准号:
10697316 - 财政年份:2021
- 资助金额:
$ 29.73万 - 项目类别:
Multiplexing working memory and timing: Encoding retrospective and prospective information in transient neural trajectories.
复用工作记忆和计时:在瞬态神经轨迹中编码回顾性和前瞻性信息。
- 批准号:
10709838 - 财政年份:2020
- 资助金额:
$ 29.73万 - 项目类别:
CRCNS: Network mechanisms of the learning and encoding of timed motor responses
CRCNS:定时运动反应学习和编码的网络机制
- 批准号:
9242196 - 财政年份:2016
- 资助金额:
$ 29.73万 - 项目类别:
CRCNS: Network mechanisms of the learning and encoding of timed motor responses
CRCNS:定时运动反应学习和编码的网络机制
- 批准号:
10017326 - 财政年份:2016
- 资助金额:
$ 29.73万 - 项目类别:
Abnormal network dynamics and "learning" in neural circuits from Fmr1-/- mice
Fmr1-/- 小鼠神经回路中的异常网络动态和“学习”
- 批准号:
8445001 - 财政年份:2012
- 资助金额:
$ 29.73万 - 项目类别:
Abnormal network dynamics and "learning" in neural circuits from Fmr1-/- mice
Fmr1-/- 小鼠神经回路中的异常网络动态和“学习”
- 批准号:
8547831 - 财政年份:2012
- 资助金额:
$ 29.73万 - 项目类别:
Learning temporal patterns: computational and experimental studies of timing
学习时间模式:时间的计算和实验研究
- 批准号:
8385396 - 财政年份:2012
- 资助金额:
$ 29.73万 - 项目类别:
Learning temporal patterns: computational and experimental studies of timing
学习时间模式:时间的计算和实验研究
- 批准号:
8489369 - 财政年份:2012
- 资助金额:
$ 29.73万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 29.73万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 29.73万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 29.73万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 29.73万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Training Grant