The Role of the Lysosome in Aging
溶酶体在衰老中的作用
基本信息
- 批准号:9564577
- 负责人:
- 金额:$ 37.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcidityAddressAgeAgingAging-Related ProcessAmino AcidsAutophagocytosisBiological ModelsCaloric RestrictionCell physiologyCellsCyclic AMP-Dependent Protein KinasesCytoplasmDNA biosynthesisDataDevelopmentDiseaseFailureFunctional disorderGlucoseGoalsHealthHomeostasisImpairmentIonsIronLeadLightLinkLongevityLysosomesMaintenanceMediatingMetabolicMetabolismMethodsMitochondriaModelingNutrientOrganellesOrganismPathway interactionsPlayProteolysisPublishingRegulationRoleSaccharomycetalesSignal PathwaySirolimusSurfaceSystemTestingTimeTranslatingVacuoleWorkYeastsage relatedbaseblood glucose regulationcell agedetection of nutrientexperimental studymitochondrial dysfunctionoverexpressionpreventprotein degradationproteostasisvacuolar H+-ATPase
项目摘要
PROJECT SUMMARY/ABSTRACT
Lysosomes (vacuoles in yeast) are acidic organelles that are well known for their role in degradation of
cellular material through pathways such as autophagy. In addition to their role in degradation, it is also
becoming clear that the lysosome is a central hub for cellular metabolism. Nutrients such as amino acids and
ions are stored in the lysosome or vacuole at high levels, and nutrient-sensing pathways important for lifespan
regulation such as the Target of Rapamycin (TOR) Pathway sense nutrients at the lysosomal surface. Impaired
lysosomal function has been linked to the aging process and development of age-associated diseases for quite
some time. However, how lysosomal dysfunction contributes to organismal aging is still unclear. Using the
yeast replicative aging model system, we recently shed light on this topic by discovering a new metabolic
connection between the lysosome/vacuole and mitochondria that is central to the aging process. Lysosomal
function requires acidification by the evolutionarily conserved Vacuolar H+-ATPase. We found that lysosomal
acidity declines at an early replicative age (defined by number of divisions) in yeast, and this change in
lysosomal acidity leads to mitochondrial dysfunction and lifespan limitation. Direct suppression of lysosomal
acidification loss through overexpression of V-ATPase subunits is sufficient to prevent mitochondrial
dysfunction and extend lifespan, suggesting that lysosomal acidity is a critical regulator of lifespan and
mitochondrial function. Consistent with this idea, we also found that lysosomal acidity is regulated by glucose
levels. Calorie restriction (CR) enhances lysosomal acidity, and this enhancement is required for CR-induced
lifespan extension. Collectively, these studies establish budding yeast as an excellent model to understand the
role of the lysosome in aging, and support our central hypothesis that lysosomal acidity is a critical determinant
of lifespan through its metabolic connection to mitochondrial function. Our previous work also raises two
important unanswered questions that we will address in this proposal: how are lysosomes and mitochondria
functionally connected (Aim 1), and how does CR regulate acidification of the lysosome/vacuole to promote
lifespan extension (Aim 2). The experiments outlined in this proposal will define the functions of the lysosome
that are important for its role in aging and disease, and identify new avenues for lifespan extension that
function through enhancement of lysosomal acidity. The activity of the lysosome is highly conserved across
species, including its metabolic link to the mitochondria. Thus, our long-term plan is to translate our results
from the yeast experiments proposed here to determine the effects of lysosome modulation on aging and
disease in mammalian systems.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Lucas Hughes其他文献
Adam Lucas Hughes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Lucas Hughes', 18)}}的其他基金
Investigating the Mitochondrial-Derived Compartment Pathway
研究线粒体衍生的室通路
- 批准号:
10402820 - 财政年份:2016
- 资助金额:
$ 37.92万 - 项目类别:
Investigating the Mitochondrial-Derived Compartment Pathway
研究线粒体衍生的室通路
- 批准号:
10592957 - 财政年份:2016
- 资助金额:
$ 37.92万 - 项目类别:
Quality Control of Mitochondrial Nutrient Transporters
线粒体营养转运蛋白的质量控制
- 批准号:
9142682 - 财政年份:2016
- 资助金额:
$ 37.92万 - 项目类别:
Investigating the Mitochondrial-Derived Compartment Pathway
研究线粒体衍生的室通路
- 批准号:
10809475 - 财政年份:2016
- 资助金额:
$ 37.92万 - 项目类别:
Quality Control of Mitochondrial Nutrient Transporters
线粒体营养转运蛋白的质量控制
- 批准号:
9926264 - 财政年份:2016
- 资助金额:
$ 37.92万 - 项目类别:
Investigating the Mitochondrial-Derived Compartment Pathway
研究线粒体衍生的室通路
- 批准号:
10207158 - 财政年份:2016
- 资助金额:
$ 37.92万 - 项目类别:
Investigating the Mitochondrial-Derived Compartment Pathway
研究线粒体衍生的室通路
- 批准号:
10618371 - 财政年份:2016
- 资助金额:
$ 37.92万 - 项目类别:
Quality Control of Mitochondrial Nutrient Transporters
线粒体营养转运蛋白的质量控制
- 批准号:
9323467 - 财政年份:2016
- 资助金额:
$ 37.92万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.92万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.92万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.92万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.92万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.92万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.92万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.92万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.92万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.92万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.92万 - 项目类别:
Research Grant