Using a Novel Comprehensive Linked Dataset to Determine Early Predictors of Opioid Overdose
使用新型综合关联数据集确定阿片类药物过量的早期预测因素
基本信息
- 批准号:9789859
- 负责人:
- 金额:$ 54.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmericanAreaBenzodiazepinesBiometryCessation of lifeCharacteristicsClinicalClinical ResearchCommunitiesComorbidityComplexDataData SetDatabasesDeath RateDiagnosisDiseaseDrug abuseEarly InterventionEducationEmergency medical serviceEnvironmentEnvironmental Risk FactorFundingFutureGoalsGuidelinesHospitalsHouseholdIndividualInterdisciplinary StudyInvestigationKnowledgeLinkLogistic ModelsMedicaidModelingOpioidOpioid AnalgesicsOregonOutcomeOverdosePatientsPatternPharmacy facilityPlayPopulationPredictive FactorPreventionProviderPublic HealthRecording of previous eventsRecordsRegistriesResearchRiskRisk FactorsRoleSourceTimeUnited States National Institutes of Healthadverse outcomebaseclinical practicedemographicsdosageexperienceimprovedindividual patientinnovationnovelopioid overdoseopioid useoverdose riskprescription drug abuseprescription monitoring programprescription opioidpreventresponsetool
项目摘要
PROJECT SUMMARY/ABSTRACT
To address more than a quadrupling of death rates from opioid overdose between 2000 and 2015, federal and
state agencies have promoted clinician education and guidelines to reduce risky prescribing. Previous
research has identified prescription patterns associated with elevated risk of opioid overdose, yet the
relationship between patient and environmental factors, prescription use/misuse trajectories, and overdose
likelihood remains largely unknown. This proposal, submitted in response to PAR-16-234 (Accelerating the
Pace of Drug Abuse Research Using Existing Data), will develop comprehensive models for assessing opioid
overdose risk, filling critical gaps in understanding of how prescription opioid use/misuse changes over time,
how such changes affect overdose risk, which patients are most vulnerable to risky patterns, and what role
household- and community-level prescription risk plays in overdose. The specific aims are:
1. Model effects of patient demographic and clinical characteristics and patient prescription patterns and their
interactions on opioid-involved overdose (fatal or nonfatal).
2. Determine the effect of household-level prescription availability on opioid overdose.
3. Determine the effect of community-level prescription availability on opioid overdose.
A key strength of our study is our novel linked dataset: the Oregon Comprehensive Opioid Risk Registry
(CORR), which links prescription and clinical history across payers with diverse sources of overdose data,
including data from the Oregon Prescription Drug Monitoring Program, Medicaid Claims, Vital Records, and
Hospital Discharge registry, as well as All Payer/All Claims and Emergency Medical Services data. Our study
will determine the odds of opioid-related overdose based on interactions of patient demographics,
diagnoses/comorbidities, initial opioid prescriptions, household prescription risk levels, and community
prescription risk levels. The study will use models to examine how risk builds over time and identify prescription
patterns that portend increased risk at an early stage. Innovation: Our study creates a novel linked dataset and
applies a complex analytic approach to radically expand understanding of patients' individual risk
environments. Significance: This study will inform clinical practice by generating new knowledge that can help
identify the most at-risk patients and modify opioid prescribing decisions regarding them. Impact: Hierarchical
models which combine individuals' prescription trajectories and clinical histories with household-level and
community-level risk factors can be extended to other complex diseases in which the adverse outcomes occur
as a result of effects acting at different levels.
项目概要/摘要
为了解决 2000 年至 2015 年间因阿片类药物过量导致的死亡率增加四倍多的问题,联邦和
国家机构促进了临床医生教育和指导方针,以减少有风险的处方。以前的
研究已确定处方模式与阿片类药物过量风险升高相关,但
患者与环境因素、处方使用/误用轨迹和用药过量之间的关系
可能性仍然很大程度上未知。该提案是针对 PAR-16-234(加速
使用现有数据进行药物滥用研究的步伐)将开发评估阿片类药物的综合模型
过量风险,填补了解处方阿片类药物使用/滥用如何随时间变化的关键空白,
这些变化如何影响用药过量风险,哪些患者最容易受到风险模式的影响,以及有何作用
家庭和社区层面的处方风险与用药过量有关。具体目标是:
1. 患者人口统计和临床特征以及患者处方模式及其影响的模型效应
阿片类药物过量(致命或非致命)的相互作用。
2. 确定家庭处方可用性对阿片类药物过量的影响。
3. 确定社区级处方可用性对阿片类药物过量的影响。
我们研究的一个关键优势是我们新颖的链接数据集:俄勒冈州综合阿片类药物风险登记处
(CORR),它将付款人的处方和临床历史与不同来源的过量数据联系起来,
包括来自俄勒冈州处方药监测计划、医疗补助索赔、重要记录的数据,以及
医院出院登记,以及所有付款人/所有索赔和紧急医疗服务数据。我们的研究
将根据患者人口统计数据的相互作用来确定与阿片类药物相关的过量用药的可能性,
诊断/合并症、初始阿片类药物处方、家庭处方风险水平和社区
处方风险级别。该研究将使用模型来检查风险如何随着时间的推移而增加,并确定处方
预示着早期风险增加的模式。创新:我们的研究创建了一个新颖的链接数据集
应用复杂的分析方法从根本上扩大对患者个体风险的了解
环境。意义:这项研究将通过产生新的知识来为临床实践提供帮助
确定风险最大的患者并修改有关他们的阿片类药物处方决定。影响:层次结构
将个人的处方轨迹和临床病史与家庭水平相结合的模型
社区层面的危险因素可以扩展到其他发生不良后果的复杂疾病
是作用于不同层次的影响的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Gordon Weiner其他文献
Scott Gordon Weiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Gordon Weiner', 18)}}的其他基金
Using a Novel Comprehensive Linked Dataset to Determine Early Predictors of Opioid Overdose
使用新型综合关联数据集确定阿片类药物过量的早期预测因素
- 批准号:
9521054 - 财政年份:2018
- 资助金额:
$ 54.32万 - 项目类别:
Using a Novel Comprehensive Linked Dataset to Determine Early Predictors of Opioid Overdose
使用新型综合关联数据集确定阿片类药物过量的早期预测因素
- 批准号:
10246460 - 财政年份:2018
- 资助金额:
$ 54.32万 - 项目类别:
Using a Novel Comprehensive Linked Dataset to Determine Early Predictors of Opioid Overdose
使用新型综合关联数据集确定阿片类药物过量的早期预测因素
- 批准号:
10463766 - 财政年份:2018
- 资助金额:
$ 54.32万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 54.32万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 54.32万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 54.32万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 54.32万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 54.32万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 54.32万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 54.32万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 54.32万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 54.32万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 54.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




