Molecular determinants of oxidative stress in Salmonella pathogenesis
沙门氏菌发病机制中氧化应激的分子决定因素
基本信息
- 批准号:9789824
- 负责人:
- 金额:$ 43.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-24 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATP Synthesis PathwayAcetatesAgingAnimal ModelAntibiotic TherapyAntioxidantsAttenuatedBacteriaCancer BiologyCarbonCell membraneCell modelCellsCessation of lifeCommunicable DiseasesCysteineCytochrome c ReductaseDNA Double Strand BreakDataDevelopmentDiabetes MellitusDiarrheaDiseaseDisulfidesElectron TransportEnzymesEquilibriumFaceFermentationFutureGenesGlutathioneGlycolysisHIVHost DefenseHumanHydrogen PeroxideIndividualInfectionInvestigationKnowledgeLeadLearningLesionLibrariesLifeLightMalignant NeoplasmsMass Spectrum AnalysisMediatingMembraneMetabolicMetabolismMetalsModelingMolecularMusMutationNADHNADH dehydrogenase (ubiquinone)NADPNADPH OxidaseOxidasesOxidation-ReductionOxidative StressOxidoreductasePathogenesisPathogenicityPathway interactionsPentosephosphate PathwayPeriplasmic ProteinsPhagocytesPharmaceutical PreparationsPhosphoglycerate MutasePhosphotransferasesPlayProcessProteinsReactive Oxygen SpeciesResearchResistanceRoleSalmonellaSalmonella entericaSalmonella infectionsSuccinatesTXN geneTestingTyphoid FeverVirulentantimicrobialcell envelopecofactorcombatdeep sequencingdisulfide bondenv Gene Productsfightinggenotoxicityin vivoinnovationinsightmacrophagemetabolomicsmicrobialmicroorganismmutantnoveloxidationoxidative damagepathogenic bacteriaperiplasmrespiratoryresponsesingle cell analysis
项目摘要
PROJECT SUMMARY/ ABSTRACT
We have made the unexpected discovery that fermentation contributes to Salmonella's antioxidant defenses,
an observation with wide ranging implications for defense against oxidative stress, well beyond bacteria.
Infectious diarrhea afflicts a billion people a year and is responsible for 4% of all human deaths. Many of these
infections are caused by one of the 2,500 serovars of nontyphoidal Salmonella enterica, which can inflict life-
threatening systemic complications in the very young, very old, and HIV-infected individuals. Oxidative stress
emanating from the enzymatic activity of the NADPH oxidase is one of the most potent host defenses
Salmonella face during their associations with professional phagocytic cells. Genotoxicity that ensues from
Fenton-mediated DNA double strand breaks together with cellular malfunctions associated with the oxidation of
cysteine residues and metal cofactors in proteins constitute the paradigm for how oxidative stress kills
Salmonella and numerous other bacterial pathogens. However, despite their central role in resistance to
salmonellosis, the relative importance of the various mechanisms by which reactive oxygen species inflict anti-
Salmonella activity is poorly understood. Our understanding of the adaptive responses that protect Salmonella
against oxidative stress is similarly superficial. A screen of mutants in response to hydrogen peroxide, one of the
most important effectors of the NADPH oxidase, revealed previously unanticipated roles for central metabolism
and the electron transport chain in the hydrogen peroxide-mediated killing of Salmonella. Our preliminary data
suggest oxidation of cell envelope proteins and plasmolysis-like lesions (i.e., separation of inner and outer
membranes) as previously unsuspected steps in the killing of Salmonella during oxidative stress. These
investigations offer an innovative framework for how NADPH oxidase inflicts potent anti-Salmonella activity
during the innate response of macrophages. We will test the hypothesis that fermentation contributes to
Salmonella's antioxidant defenses by assisting with ATP synthesis, balancing redox, and enabling disulfide bond
formation in periplasmic proteins, thereby protecting the cell envelope from lethal damage by reactive oxygen
species generated by the NADPH oxidase. Specifically, we will characterize the role fermentation plays in the
antioxidant defenses of typhoidal and nontyphoidal Salmonella, elucidate the mechanism by which oxidative
stress promotes fermentation, and determine how intracellular Salmonella is killed by the NADPH oxidase. Not
only will this knowledge illuminate key aspects of Salmonella pathogenesis, but should also provide insights into
unique and shared antioxidant defenses of various Salmonella serovars. Our research could ultimately have an
impact on fields as diverse as microbial pathogenesis, aging, diabetes, or cancer biology for which oxidative
stress is an intrinsic component. Drugs that specifically inhibit bacterial glycolytic enzymes and fermentative
pathways may lead to the development of novel antibiotic treatments. Future Salmonella countermeasures could
also explore strategies that increase respiratory activity as a means to foment oxidative killing.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andres Vazquez-Torres其他文献
Andres Vazquez-Torres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andres Vazquez-Torres', 18)}}的其他基金
Development of DksA-targeted Antibiotics for Treatment of Gram-negative Infections
开发用于治疗革兰氏阴性菌感染的 DksA 靶向抗生素
- 批准号:
10487785 - 财政年份:2022
- 资助金额:
$ 43.21万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10514615 - 财政年份:2020
- 资助金额:
$ 43.21万 - 项目类别:
Analysis of regulatory networks in Salmonella pathogenesis.
沙门氏菌发病机制的调控网络分析。
- 批准号:
10468174 - 财政年份:2020
- 资助金额:
$ 43.21万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10337064 - 财政年份:2020
- 资助金额:
$ 43.21万 - 项目类别:
Analysis of regulatory networks in Salmonella pathogenesis.
沙门氏菌发病机制的调控网络分析。
- 批准号:
10678919 - 财政年份:2020
- 资助金额:
$ 43.21万 - 项目类别:
Analysis of regulatory networks in Salmonella pathogenesis.
沙门氏菌发病机制的调控网络分析。
- 批准号:
10262941 - 财政年份:2020
- 资助金额:
$ 43.21万 - 项目类别:
Analysis of regulatory networks in Salmonella pathogenesis.
沙门氏菌发病机制的调控网络分析。
- 批准号:
10092410 - 财政年份:2020
- 资助金额:
$ 43.21万 - 项目类别:
Molecular determinants of oxidative stress in Salmonella pathogenesis
沙门氏菌发病机制中氧化应激的分子决定因素
- 批准号:
10222502 - 财政年份:2018
- 资助金额:
$ 43.21万 - 项目类别:
Molecular determinants of oxidative stress in Salmonella pathogenesis
沙门氏菌发病机制中氧化应激的分子决定因素
- 批准号:
10468719 - 财政年份:2018
- 资助金额:
$ 43.21万 - 项目类别:
Molecular Analysis of Bacterial Adaptive Response to Host Reactive Species
细菌对宿主反应物种适应性反应的分子分析
- 批准号:
8443269 - 财政年份:2013
- 资助金额:
$ 43.21万 - 项目类别:
相似海外基金
Development of palladium-catalyzed novel organic transformations of silylated allyl acetates
钯催化的硅烷化乙酸烯丙酯新型有机转化的开发
- 批准号:
18K05101 - 财政年份:2018
- 资助金额:
$ 43.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Biosynthesis of Methylketones and 2-Alkany l Acetates
甲基酮和 2-烷酰基乙酸酯的生物合成
- 批准号:
9118188 - 财政年份:1992
- 资助金额:
$ 43.21万 - 项目类别:
Standard Grant














{{item.name}}会员




