Osteocyte Mechanotransduction and the Gabapentin-Sensitive Matrix-Channel Tethering Complex
骨细胞机械转导和加巴喷丁敏感基质通道束缚复合物
基本信息
- 批准号:9789654
- 负责人:
- 金额:$ 57.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAcuteAddressAffinityAllelesAntiepileptic AgentsBehaviorBindingBiochemicalBiochemistryBiologicalBone MatrixBone ResorptionC57BL/6 MouseCalcium ChannelCell membraneCell surfaceCellsChronicClinicalComplexConfocal MicroscopyCuesDiseaseElementsFoundationsFractureGeneticHeparan Sulfate ProteoglycanHistologicHormonalImageImpairmentIn VitroKnockout MiceLigandsLiquid substanceLoxP-flanked alleleMaintenanceMeasuresMechanicsMembraneMethodsMineralsMolecularMorbidity - disease rateMusMusculoskeletalNeuropathyOsteoblastsOsteoclastsOsteocytesOsteogenesisOsteopeniaPatientsPharmaceutical PreparationsPharmacologyPositioning AttributeProtocols documentationRegimenRehabilitation therapyResearch DesignSignal TransductionSkeletonStimulusStructureSurface Plasmon ResonanceSystemTechniquesTimeTissuesWorkbonebone cellbone lossbone massbone qualitybone strengthdensitydentin matrix protein 1designdisabilityextracellularfracture riskgabapentingenetic approachin vivoinsightknock-downmechanical forcemechanical loadmechanotransductionmouse modelnovelnovel strategiespainful neuropathyperlecanpreservationpreventreceptorresponsesedentary lifestyleside effectskeletalvoltage
项目摘要
Project Summary
The skeleton relies on a variety of mechanical, biochemical, and hormonal cues to regulate bone strength,
structure, and mass. Osteocytes are both the most abundant and most mechanosensitive cells within bone.
Located deep in the bone matrix, these cells are optimally positioned to sense and respond to force, directing
the activity of other skeletal cells, including osteoblasts and osteoclasts. A variety of molecules influence
osteocyte mechanosensation; however, how force is directly transmitted from the mineralized matrix to the cell
membrane to induce a biological response remains unknown. We have identified the presence of a complex
within osteocytes composed of extracellular perlecan/HSPG2 and a cell surface subunit (a2d1) of voltage
sensitive calcium channels (VSCCs). As the perlecan-containing tethers bind the a2d1 subunit of VSCCs, this
Matrix-Channel Tethering Complex (M-CTC) enables direct connection between the mineralized matrix and the
cell membrane. Thus, the proposed studies will dissect how this mechanosensory complex mechanistically
regulates osteocyte behavior, under both basal and mechanical loading conditions. Additionally, the a2d1
subunit of the complex is the receptor for the commonly used antiepileptic and neuropathic pain drug,
gabapentin, which can have severe adverse skeletal side effects. Thus, this work will not only investigate the
foundational mechanisms through which osteocytes sense force, but will also inform the design of novel
strategies to offset the negative effects of gabapentin on bone that reduce bone mass.
Our overarching hypothesis is that perlecan-containing tethers, within the M-CTC, transmit force to the a2d1
subunit of VSCCs, enabling mechanical signals to be transduced into anabolic biochemical responses in
osteocytes.
Aim 1: Determine if osteocyte-specific disruption of the M-CTC membrane receptor a2d1 impairs basal
or load-induced bone formation with resultant loss in bone quality.
Aim 2: Determine if tissue-specific genetic ablation of the PLN matrix tethers within the M-CTC of
osteocytes impairs basal or load-induced bone formation with resultant loss in bone quality.
Aim 3: Determine how gabapentin interferes with the M-CTC to impair basal and load-induced bone
formation.
The function of the M-CTC has not been explored in vivo. As such, these integrated studies, designed to
genetically and pharmacologically disrupt the M-CTC and assess the functional consequences, will provide
basic insights into the relationship between extracellular tethers and calcium channels in bone. In the long
term, this understanding may reduce bone loss in patients treated with gabapentin for neuropathic pain.
项目摘要
骨骼依赖于各种机械、生化和激素信号来调节骨骼强度,
结构和质量。骨细胞是骨组织中数量最多、力学敏感性最高的细胞。
位于骨基质深处,这些细胞处于最佳位置,可以感知和响应力,
其他骨骼细胞的活性,包括成骨细胞和破骨细胞。多种分子影响
骨细胞机械感觉;然而,力如何直接从矿化基质传递到细胞
膜诱导生物反应仍然未知。我们发现了一种复杂的
在骨细胞内,由细胞外串珠素/HSPG 2和细胞表面电压亚基(a2 d1)组成,
敏感钙通道(VSCC)。由于含串珠素的系链结合VSCC的a2 d1亚基,
基质-通道栓系复合物(M-CTC)使矿化基质和细胞之间的直接连接成为可能。
细胞膜因此,拟议的研究将剖析这种机械感觉复合体如何在机械上
在基础和机械负荷条件下调节骨细胞行为。此外,A2 D1
复合物的亚基是常用的抗癫痫和神经性疼痛药物的受体,
加巴喷丁,它可能有严重的不良骨骼副作用。因此,这项工作不仅将调查
骨细胞感知力的基本机制,但也将告知新的设计。
抵消加巴喷丁对骨的负面影响,减少骨量的策略。
我们的总体假设是,在M-CTC内,含有串珠素的系链将力传递到a2 d1
VSCC的亚基,使机械信号能够被转导到合成代谢生化反应中,
骨细胞
目的1:确定M-CTC膜受体a2 d1的骨细胞特异性破坏是否损害了基础免疫功能。
或负荷诱导的骨形成导致骨质量损失。
目的2:确定M-CTC内PLN基质系链的组织特异性遗传消融是否可用于
骨细胞损害基础或负荷诱导的骨形成,导致骨质量的损失。
目的3:确定加巴喷丁如何干扰M-CTC损害基础骨和负荷诱导骨
阵
尚未在体内探索M-CTC的功能。因此,这些综合研究旨在
遗传和免疫破坏M-CTC并评估功能后果,将提供
对细胞外系链和骨钙通道之间关系的基本认识。从长远
换句话说,这种理解可能会减少加巴喷丁治疗神经性疼痛患者的骨丢失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Roy Thompson其他文献
William Roy Thompson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Roy Thompson', 18)}}的其他基金
Osteocyte Mechanotransduction and the Gabapentin-Sensitive Matrix-Channel Tethering Complex
骨细胞机械转导和加巴喷丁敏感基质通道束缚复合物
- 批准号:
10428360 - 财政年份:2018
- 资助金额:
$ 57.7万 - 项目类别:
Osteocyte Mechanotransduction and the Gabapentin-Sensitive Matrix-Channel Tethering Complex
骨细胞机械转导和加巴喷丁敏感基质通道束缚复合物
- 批准号:
10192665 - 财政年份:2018
- 资助金额:
$ 57.7万 - 项目类别:
Mechanical Partitioning of mTORC2 to Direct Mesenchymal Stem Cell Fate
mTORC2 的机械分区指导间充质干细胞的命运
- 批准号:
9099270 - 财政年份:2016
- 资助金额:
$ 57.7万 - 项目类别:
Role of mechanically activated Src/mTORC2 signaling on cytoskeletal adaptation
机械激活的 Src/mTORC2 信号对细胞骨架适应的作用
- 批准号:
8457722 - 财政年份:2013
- 资助金额:
$ 57.7万 - 项目类别:
Role of mechanically activated Src/mTORC2 signaling on cytoskeletal adaptation
机械激活的 Src/mTORC2 信号对细胞骨架适应的作用
- 批准号:
8601625 - 财政年份:2013
- 资助金额:
$ 57.7万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 57.7万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 57.7万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 57.7万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 57.7万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 57.7万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 57.7万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 57.7万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 57.7万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 57.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 57.7万 - 项目类别:
Operating Grants