Decoding the bridges and barriers to cellular reprogramming and lineage identity
解码细胞重编程和谱系身份的桥梁和障碍
基本信息
- 批准号:9790532
- 负责人:
- 金额:$ 114.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-19 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAutomobile DrivingBackBiologicalBiologyCRISPR/Cas technologyCardiacCardiac MyocytesCell Fate ControlCellsComputer AnalysisDNADevelopmentDevelopmental BiologyElementsExposure toFrequenciesGene DeliveryGene ExpressionGenesGeneticGenetic ScreeningGenetic TranscriptionGenomicsGoalsHuman bodyImageIndividualKnowledgeMapsMeasuresMethodologyMethodsMolecularMolecular ProfilingNaturePathway interactionsPharmaceutical PreparationsPhenotypePopulationRNARegenerative MedicineResearchRestSeriesSorting - Cell MovementSourceTechniquesTechnologyThinkingTimeViralWorkbasecell transformationcell typeclinical applicationexperimental studyinnovationinterestnew technologyresponsescreeningsmall moleculetooltransdifferentiationtranslational approach
项目摘要
Project Summary
The human body is composed of a large number of cell types. These types are generally quite stable in the
sense that cells of one type, once established, typically do not switch to other cell types. A major goal for
regenerative medicine and our understanding of cell type in general is to discover if and how we can force cells
to switch from one type to another. Recent results over roughly the last decade have shown that it is in
principle possible to convert cells from one type by forcing them to turn on small sets of genes. However, in the
vast majority of cases, we have no idea what these sets of genes are out of the many thousands of potential
ones, and so our understanding has largely been dictated by picking candidates based on prior knowledge.
Furthermore, even when these sets of genes are identified, the efficiency of interconversion of cell type is very
low, with only a small percentage of source cells converting to the target type.
Our proposed research tackles both of these challenges using a combination of new concepts of cell identity
and new technology for tracing individual cells back in time. For cell identity, the approach most common in the
field is to use profiles of which genes are on or off in any particular cell type to determine lineage-specific
factors. However, while these genes are lineage-specific, they may not be lineage-determining in the sense
that they may not drive a cell to a particular type per se. We have developed a methodology we call PerturbID
that uses a series of systematic perturbations to identify specific genes that turn on and off in response, which
we have shown have the capacity to interconvert cells. We propose to use PerturbID to identify and validate
candidates for cell type transformation across a range of cell types, ultimately arriving at a set of general
principles for cellular reprogramming. This will have applications for regenerative medicine as well as across
biology as a whole. The other major problem, of efficiency, has remained mysterious because nobody currently
knows why some cells are capable of reprogramming while the vast majority are not. The challenge is the lack
of tools for retrospective profiling of cells: how do we rewind time to profile the cells that will ultimately adopt a
different fate? We have developed tools for performing this retrospective profiling. We will apply this “time
machine” methodology to the problem of inefficient reprogramming to determine the unique signature of cells
primed for cell type conversion, and will perform genetic screens to isolate pathways capable of manipulating
this frequency. Together, our work will transform our concepts of cell type and will have enormous practical
implications for its application in regenerative medicine.
项目概要
人体由大量细胞类型组成。这些类型一般都相当稳定
感觉一种类型的细胞一旦建立,通常不会转换为其他细胞类型。一个主要目标是
再生医学和我们对细胞类型的一般理解是为了发现我们是否以及如何能够迫使细胞
从一种类型切换到另一种类型。大约过去十年的最新结果表明,它处于
通过迫使细胞开启一小组基因,可以将细胞从一种类型转变为一种原理。然而,在
绝大多数情况下,我们不知道这些基因组在数千个潜在基因中是什么
因此,我们的理解很大程度上取决于根据先验知识挑选候选人。
此外,即使这些基因组被识别出来,细胞类型相互转换的效率也非常高。
低,只有一小部分源单元格转换为目标类型。
我们提出的研究结合了细胞身份的新概念来解决这两个挑战
以及及时追踪单个细胞的新技术。对于细胞识别,最常见的方法是
领域是使用任何特定细胞类型中基因开启或关闭的概况来确定谱系特异性
因素。然而,虽然这些基因是谱系特异性的,但它们在某种意义上可能不是谱系决定性的。
它们可能不会将细胞本身驱动为特定类型。我们开发了一种称为 PerturbID 的方法
它使用一系列系统扰动来识别响应中打开和关闭的特定基因,
我们已经证明了具有相互转换细胞的能力。我们建议使用 PerturbID 来识别和验证
跨一系列细胞类型进行细胞类型转化的候选者,最终得到一组通用的
细胞重编程原理。这将应用于再生医学以及跨领域
生物学作为一个整体。另一个主要问题,即效率,仍然是个谜,因为目前没有人
知道为什么有些细胞能够重新编程,而绝大多数细胞却不能。挑战在于缺乏
用于细胞回顾性分析的工具:我们如何倒带时间来分析最终采用细胞分析的细胞
不同的命运?我们开发了用于执行这种回顾性分析的工具。我们将应用这个“时间
机器”方法来解决低效重编程问题,以确定细胞的独特特征
为细胞类型转换做好准备,并将进行遗传筛选以分离能够操纵的途径
这个频率。我们的工作将共同改变我们对细胞类型的概念,并将具有巨大的实际意义
及其在再生医学中的应用的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajan Jain其他文献
Rajan Jain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajan Jain', 18)}}的其他基金
Deciphering how 3D genome organization orchestrates cardiac cellular identity
解读 3D 基因组组织如何协调心脏细胞身份
- 批准号:
10574267 - 财政年份:2023
- 资助金额:
$ 114.26万 - 项目类别:
Single-cell dissection of chromatin architecture mechanisms connecting pathologic instability and transcriptional silencing
连接病理不稳定和转录沉默的染色质结构机制的单细胞解剖
- 批准号:
10116703 - 财政年份:2020
- 资助金额:
$ 114.26万 - 项目类别:
Single-cell dissection of chromatin architecture mechanisms connecting pathologic instability and transcriptional silencing
连接病理不稳定和转录沉默的染色质结构机制的单细胞解剖
- 批准号:
10473778 - 财政年份:2020
- 资助金额:
$ 114.26万 - 项目类别:
Single-cell dissection of chromatin architecture mechanisms connecting pathologic instability and transcriptional silencing
连接病理不稳定和转录沉默的染色质结构机制的单细胞解剖
- 批准号:
10268225 - 财政年份:2020
- 资助金额:
$ 114.26万 - 项目类别:
Single-cell dissection of chromatin architecture mechanisms connecting pathologic instability and transcriptional silencing
连接病理不稳定和转录沉默的染色质结构机制的单细胞解剖
- 批准号:
10684727 - 财政年份:2020
- 资助金额:
$ 114.26万 - 项目类别:
Decoding the bridges and barriers to cellular reprogramming and lineage identity
解码细胞重编程和谱系身份的桥梁和障碍
- 批准号:
10248408 - 财政年份:2019
- 资助金额:
$ 114.26万 - 项目类别:
Decoding the bridges and barriers to cellular reprogramming and lineage identity
解码细胞重编程和谱系身份的桥梁和障碍
- 批准号:
10461144 - 财政年份:2019
- 资助金额:
$ 114.26万 - 项目类别:
Decoding the bridges and barriers to cellular reprogramming and lineage identity
解码细胞重编程和谱系身份的桥梁和障碍
- 批准号:
10020996 - 财政年份:2019
- 资助金额:
$ 114.26万 - 项目类别:
Investigating the role of Hopx in cardiac progenitor proliferation
研究 Hopx 在心脏祖细胞增殖中的作用
- 批准号:
8566353 - 财政年份:2013
- 资助金额:
$ 114.26万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 114.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 114.26万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 114.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 114.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




