Sudden Cardiac Arrest (SCA): Prediction and Prevention
心脏骤停 (SCA):预测和预防
基本信息
- 批准号:9790928
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAlgorithmsArchivesAreaAtherosclerosis Risk in CommunitiesBehavior TherapyBehavioralBiomedical TechnologyBiotechnologyCardiac healthCardiologyCause of DeathCessation of lifeClinicalClinical ResearchClinical assessmentsCollaborationsDataData AnalysesDependenceDevelopmentEpidemiologyEvaluationEventFutureGrowthHealth PromotionHealth TechnologyHealthcareHeart ArrestHeart failureHospitalizationImplantable DefibrillatorsIndividualIndustrializationInformation TechnologyInterdisciplinary StudyInterventionMachine LearningMeasuresMedicineMethodsModernizationMyocardial InfarctionObservational StudyOutcomePatientsPerformancePersonsPhysiciansPreventionPrevention strategyPreventive MedicinePublic HealthRandomizedRecoveryResearchResearch ProposalsRiskRisk AssessmentRisk EstimateRisk FactorsRisk ReductionScienceScientistSubgroupSurvival AnalysisTestingTimeTrainingTranslatingadaptive interventioncareerclinical decision supportclinical decision-makingcohortdesignhealth care deliveryhigh riskimprovedinterestlearning algorithmlearning strategymHealthmobile applicationmodifiable risknovelopen sourcepopulation basedprospectiverandomized trialstatisticssupport toolssurvival predictiontime usetooltrial designusability
项目摘要
Project Summary: The recent advances in information technologies and biotechnologies is an opportunity to
substantially improve healthcare. To exploit the power of data to benefit patients, however, effective clinical
decision support tools and novel, individualized interventions must be designed, tested, and implemented.
Although there has been progress in the development of statistical/machine learning methods, numerous
challenges remain to tailor and translate them into useful clinical decision support tools.
Sudden cardiac arrest (SCA) accounts for 15-20% of all adult deaths and is the industrial world’s leading cause
of death. Clinical studies of SCA produce repeated measures on risk factors and multiple different kinds of
events over time. We refer to these data as
survival, longitudinal, and multivariate (SLAM) data.
In this project,
we will develop novel statistical learning methods for SLAM data and apply them to two distinct aspects of the
SCA problem. First, we propose to develop novel statistical learning algorithms that better predict an
individual’s multivariate longitudinal data with a focus on the risk of first and subsequent SCA. Second, we
propose to develop micro-randomization and
just-in-time adaptive intervention trial
designs to reduce
behavioral risk factors for SCA among persons at high risk.
The methods that we propose to develop will be applicable in many areas of medicine. However, they are
motivated by and applied to SCA in this project. Our team has expertise in statistics including causal inference,
longitudinal data and survival analyses, plus machine learning, epidemiology, cardiology, and behavioral
interventions through mobile health (mHealth). This proposed collaboration has the following specific aims:
Aim 1: Develop and test statistical learning tools for real-time risk prediction of survival, longitudinal,
and multivariate (SLAM) outcome data.
Aim 2: Estimate the risk of SCA and its dependence on dynamic modifiable and non-modifiable factors
in population-based and clinical cohorts.
Aim 3: Plan and conduct a feasibility-usability study of micro-randomization and just-in-time adaptive
intervention trial designs for behavioral change to reduce SCA risk.
Upon successful completion of these aims, we will have contributed to the progress of healthcare delivery
through the application of computational statistics to medicine. !
!
项目概述:信息技术和生物技术的最新进展是一个机会,
大大改善医疗保健。然而,为了利用数据的力量使患者受益,
必须设计、测试和实施决策支持工具和新颖的个性化干预措施。
虽然统计/机器学习方法的发展取得了进展,但许多
但仍存在着将其定制并转化为有用的临床决策支持工具的挑战。
心脏骤停(SCA)占所有成人死亡的15-20%,是工业世界的主要原因
死亡之SCA的临床研究对危险因素和多种不同类型的
随着时间的推移。我们将这些数据称为
生存、纵向和多变量(SLAM)数据。
在本项目中,
我们将为SLAM数据开发新的统计学习方法,并将其应用于两个不同的方面。
SCA问题。首先,我们建议开发新的统计学习算法,更好地预测
个体的多变量纵向数据,重点关注首次和后续SCA的风险。二是
建议发展微随机化,
适时适应性干预试验
设计减少
高危人群中SCA的行为危险因素。
我们提出的方法将适用于医学的许多领域。但他们
在这个项目中受到SCA的启发并应用于SCA。我们的团队拥有统计学方面的专业知识,包括因果推断,
纵向数据和生存分析,加上机器学习,流行病学,心脏病学和行为
通过移动的保健采取干预措施。这一拟议的合作有以下具体目标:
目标1:开发和测试统计学习工具,用于实时预测生存风险,纵向,
和多变量(SLAM)结果数据。
目标2:估计SCA的风险及其对动态可修改和不可修改因素的依赖性
在人群和临床队列中。
目标3:计划并执行微随机化和即时自适应的可行性-可用性研究
干预试验设计,以改变行为,降低SCA风险。
在成功完成这些目标后,我们将为医疗服务的进步做出贡献
将计算统计学应用于医学。!
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shannon Wongvibulsin其他文献
Shannon Wongvibulsin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)