DMS/NIGMS 1: Statistical modeling and estimation of cellular population dynamics
DMS/NIGMS 1:细胞群体动态的统计建模和估计
基本信息
- 批准号:10378318
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffectBayesian MethodBiological AssayBirthBirth RateCell CountCell Culture TechniquesCell CycleCell LineCell divisionCell modelCellsCessation of lifeComplexDataDeath RateEventGrowthIn VitroIndividualLeadMeasuresMethodologyMethodsModelingNational Institute of General Medical SciencesOutcomePharmaceutical PreparationsPopulationPopulation DynamicsPopulation GrowthProcessPropertyReproducibilityReproducibility of ResultsStatistical MethodsStatistical ModelsSystemTestingTimeWorkbasecell growthcell typedensityexperimental studyinterestmathematical modelnovelrate of changeresponse
项目摘要
Cell culture assays are a critical experimental method used to determine how a set of experimental conditions affect
the growth and dynamics of a cell population in vitro. Methods used to perturb the conditions include varying the
amount of perturbagen or any other culture condition to measure response. In order to quantify the relationship
between the culture conditions tested and the change in population growth dynamics, a statistical model is employed
to estimate and predict these effects. Current methods treat cell count as the response variable in statistical models
and summarize the result in metrics like the IC50. These methods are not invariant to changes in time, seeding count,
or other conditions, and can lead to reproducibility issues. Different conditions lead to different results in terms of
relative cell count even if the growth dynamics are the same, so results are not easily generalizable to other
scenarios. Here we propose a rigorous mechanism-based method for estimation of response that uses a
mathematical model for population growth incorporating cell division, death, and transitions between states. The rate
of events are the response in hierarchical statistical models that allows variability in conditions and even cell lines. The
result is an analysis platform that treats cell-intrinsic properties rather than cell count as outcomes so that they are
invariant to experimental duration, seeding density, and other factors. We propose this novel methodology as a standalone
framework for analysis of any cell culture experimental data. We model cell growth as a branching process that
describes how an individual cell or type of cells divide, die, or undergo cell state transitions by defining each of these
events as random variables parameterized by the rates. We attach a statistical model for the rates as a function of
covariates of interest. Data in the form of cell counts connects to rates through the branching process, and we use
Bayesian methods to approximate the likelihood and estimate the parameter values of the model. This approach
creates a rigorous framework for performing estimation of cellular response as a function of the growth rates obtained
from counts as input data, and more generally for estimation of branching process parameters. We will establish the
statistical methods in the following aims: (1.) We will develop Bayesian methods and a statistical framework for
estimation of cell birth and death rates. (2.) We will create a hierarchical model framework to account for cell line and
experimental effects to help create reproducible results. (3.) We will develop modeling for more complicated branching
processes that can account for dynamics of a population undergoing a variety of state transitions including cycling,
differentiation, and size.
细胞培养测定是用于确定一组实验条件如何影响细胞生长的关键实验方法。
体外细胞群的生长和动力学。用于扰动条件的方法包括改变
干扰原的量或任何其它培养条件以测量响应。为了量化
在所测试的培养条件和群体生长动力学的变化之间,采用统计模型
来估计和预测这些影响。目前的方法将细胞计数视为统计模型中的响应变量
并将结果总结为IC50等指标。这些方法对于时间、播种计数、
或其它条件,并且可能导致再现性问题。不同的条件导致不同的结果,
即使生长动力学相同,相对细胞计数也是相同的,因此结果不容易推广到其他
场景在这里,我们提出了一个严格的机制为基础的方法估计的反应,使用
人口增长的数学模型,包括细胞分裂,死亡和状态之间的转换。率
事件的响应是分层统计模型中的响应,该模型允许条件甚至细胞系的可变性。的
result是一个分析平台,它将细胞内在特性而不是细胞计数视为结果,
不受实验持续时间、播种密度和其他因素的影响。我们提出这种新的方法作为一个独立的
分析任何细胞培养实验数据的框架。我们将细胞生长建模为分支过程,
描述了单个细胞或细胞类型如何分裂、死亡或经历细胞状态转换,
事件作为由比率参数化的随机变量。我们附上一个统计模型的利率作为一个函数,
关注的协变量。细胞计数形式的数据通过分支过程连接到速率,我们使用
贝叶斯方法来近似似然和估计模型的参数值。这种方法
创建了一个严格的框架,用于执行细胞反应的估计,作为获得的生长速率的函数,
从计数作为输入数据,更一般地用于支化过程参数的估计。我们将建立
统计方法的目的如下:(1)。我们将开发贝叶斯方法和统计框架,
估计细胞的出生率和死亡率。(2.)我们将创建一个分层模型框架来解释细胞系和
实验效果,以帮助创造可重复的结果。(3.)我们将为更复杂的分支开发建模
可以解释经历各种状态转换的种群的动态的过程,
差异化和规模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas McDonald其他文献
Thomas McDonald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas McDonald', 18)}}的其他基金
DMS/NIGMS 1: Statistical modeling and estimation of cellular population dynamics
DMS/NIGMS 1:细胞群体动态的统计建模和估计
- 批准号:
10698147 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists