A Wireless micro-ECoG Prosthesis for Speech
用于语音的无线微型 ECoG 假肢
基本信息
- 批准号:10375951
- 负责人:
- 金额:$ 65.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAmyotrophic Lateral SclerosisAreaAuditoryAuditory areaBrainClinicalCommunicationConsumptionCustomDataDevelopmentElectrodesElectroencephalographyEnvironmentEye MovementsFamilyFriendsGenerationsHealth PersonnelHumanImplantInfection preventionLifeLocked-In SyndromeMachine LearningMapsMeasuresModelingMotor CortexMuscular DystrophiesMyopathyNeuromuscular DiseasesPatientsPerformanceProsthesisQuality of lifeReadingResearchResolutionRogaineSamplingSelf-Help DevicesSignal TransductionSpeechTechniquesTechnologyTestingTimeTrainingTranslatingTranslationsVoiceWireless TechnologyWorkbrain surgerydensitydesignhigh dimensionalityimprovedinfection riskliquid crystal polymermachine learning algorithmmotor disorderneural prosthesisneurotransmissionnovelreading abilityreconstructionrelating to nervous systemsignal processingsuccess
项目摘要
Project Summary / Abstract
Patients who suffer from debilitating neuromuscular disorders (e.g. amyotrophic lateral sclerosis – ALS, Locked-
in-Syndrome – LIS, and muscular dystrophies/myopathies) have difficulty or an inability to communicate through
speech leading to a detrimental loss in quality of life. Current technology using eye movements and
signals/spellers from electroencephalography (EEG) are slow and inconsistent. Neural prostheses offer an
opportunity to produce fast and accurate communication for patients suffering from neuromuscular disorders,
but success for regaining speech has been limited due to technological limitations: there is an inability to capture
the high dimensionality of the brain and an inability to record in naturalistic conditions using fully implanted,
wireless electrode arrays. To solve these challenges, we develop and optimize custom wireless micro-
electrocorticographic (µECoG) arrays with over 1,000 channels to decode speech directly from the human brain.
We will accomplish this by 1) Testing and optimizing the spatial resolution of µECoG to capture neural signals,
2) Fine-tune our machine learning algorithms to decode speech directly from the brain and 3) developing wireless
technology to enable neural prosthetic usage in naturalistic settings. High-density, high channel-count neural
interfaces will offer an unprecedented ability to decode speech from the human brain. This ability combined with
wireless technology, will allow for a new generation of speech neural prostheses.
项目摘要/摘要
患有衰弱神经肌肉疾病的患者(例如肌萎缩侧索硬化症-ALS,锁定-
-综合征-LIS和肌营养不良症/肌病)有沟通困难或无法通过
言论导致生活质量的有害损失。目前的技术使用眼球运动和
来自脑电(EEG)的信号/拼写缓慢且不一致。神经假体提供了一种
为患有神经肌肉疾病的患者提供快速、准确的交流机会,
但由于技术的限制,恢复语言的成功一直是有限的:无法捕获
大脑的高维度,以及无法在自然条件下使用完全植入的记录,
无线电极阵列。为了解决这些挑战,我们开发和优化了定制无线微
拥有1,000多个通道的皮层脑电图仪(µECoG)阵列可直接从人脑中解码语音。
我们将通过1)测试和优化µECoG的空间分辨率来捕获神经信号来实现这一点,
2)微调我们的机器学习算法,以直接从大脑解码语音;3)开发无线
能够在自然主义环境中使用神经假体的技术。高密度、高通道数神经
接口将提供前所未有的从人脑解码语音的能力。这一能力与
无线技术,将使新一代语音神经假体成为可能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth L Shepard其他文献
Kenneth L Shepard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth L Shepard', 18)}}的其他基金
A Wireless micro-ECoG Prosthesis for Speech
用于语音的无线微型 ECoG 假肢
- 批准号:
10513407 - 财政年份:2021
- 资助金额:
$ 65.56万 - 项目类别:
A Wireless micro-ECoG Prosthesis for Speech
用于语音的无线微型 ECoG 假肢
- 批准号:
10490475 - 财政年份:2021
- 资助金额:
$ 65.56万 - 项目类别:
A Wireless micro-ECoG Prosthesis for Speech
用于语音的无线微型 ECoG 假肢
- 批准号:
10706320 - 财政年份:2021
- 资助金额:
$ 65.56万 - 项目类别:
Direct bioelectronic detection of SARS-CoV-2 from saliva using single-molecule field-effect transistor array
使用单分子场效应晶体管阵列直接生物电子检测唾液中的 SARS-CoV-2
- 批准号:
10266395 - 财政年份:2020
- 资助金额:
$ 65.56万 - 项目类别:
Direct bioelectronic detection of SARS-CoV-2 from saliva using single-molecule field-effect transistor array
使用单分子场效应晶体管阵列直接生物电子检测唾液中的 SARS-CoV-2
- 批准号:
10320987 - 财政年份:2020
- 资助金额:
$ 65.56万 - 项目类别:
Integrated, multiplexed high-frequency electronic analysis of DNA in nanopores
纳米孔中 DNA 的集成、多重高频电子分析
- 批准号:
8545205 - 财政年份:2012
- 资助金额:
$ 65.56万 - 项目类别:
Integrated, multiplexed high-frequency electronic analysis of DNA in nanopores
纳米孔中 DNA 的集成、多重高频电子分析
- 批准号:
8719765 - 财政年份:2012
- 资助金额:
$ 65.56万 - 项目类别:
Integrated, multiplexed high-frequency electronic analysis of DNA in nanopores
纳米孔中 DNA 的集成、多重高频电子分析
- 批准号:
8365334 - 财政年份:2012
- 资助金额:
$ 65.56万 - 项目类别:
Rapid Allergenic Particle Identification (RAPID)
快速过敏性颗粒识别 (RAPID)
- 批准号:
7337686 - 财政年份:2007
- 资助金额:
$ 65.56万 - 项目类别:
Rapid Allergenic Particle Identification (RAPID)
快速过敏性颗粒识别 (RAPID)
- 批准号:
8073325 - 财政年份:2007
- 资助金额:
$ 65.56万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 65.56万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 65.56万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 65.56万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 65.56万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 65.56万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 65.56万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 65.56万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 65.56万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 65.56万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 65.56万 - 项目类别:
Continuing Grant