Longitudinal Spatial-Nonspatial Decision Support for Competing Outcomes in Head and Neck Cancer Therapy
头颈癌治疗竞争结果的纵向空间-非空间决策支持
基本信息
- 批准号:10381044
- 负责人:
- 金额:$ 7.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAftercareAgeAmerican Joint Committee on CancerAnatomyAwardBiomedical ComputingCancer CenterCaringCharacteristicsChronicClinicalClinical ManagementClinical ResearchComputing MethodologiesCountryDataData AnalysesData ScienceData SetData SourcesDecision Support ModelDecision Support SystemsDependenceDetectionDevelopmentDevelopment PlansDiabetes MellitusDiseaseDoseEpidemicEquilibriumEvolutionExtramural ActivitiesFundingHead and Neck CancerHuman PapillomavirusHybridsIncidenceIndividualLearningLeftLocationLong-Term EffectsMalignant NeoplasmsMalignant neoplasm of brainMalignant neoplasm of lungMental disordersMentorsMethodologyMethodsModelingModificationMorbidity - disease rateNauseaOperative Surgical ProceduresOrganOutcomeParentsPatient Outcomes AssessmentsPatientsPopulationProbabilityProcessPsychological reinforcementPublic HealthQuality of lifeRadiation Dose UnitRadiation therapyRadiometryReportingResearch PersonnelResidual stateResolutionRiskScienceSelection for TreatmentsSeveritiesSignal TransductionSmokingStagingSubstance abuse problemSurvivorsSymptomsTimeTobaccoToxic effectTrainingTreatment EfficacyTreatment outcomeUpdateValidationXerostomiaanticancer researchbasebioimagingcancer diagnosiscancer therapycareer developmentchemotherapyclinical carecohortdesignhead and neck cancer patientheterogenous datahigh dimensionalityimprovedin silicoindividual patientinsightinterpatient variabilitymortalitynovelnutritionoptimal treatmentsparent projectpatient stratificationpersonalized medicinepredictive modelingpreventprogramsprospectiveprototyperepositoryresponserisk predictionrisk prediction modelserial imagingstandard of caresurvival outcomesymptom clustertreatment planningtreatment strategytumor
项目摘要
Project Summary/Abstract
Head and neck cancer (HNC) patients survive years after oncologic therapy due to increased
efficacy of therapy, increased incidences of human papilloma virus related HNC, and decreased numbers of
smoking and tobacco related tumors. However, the majority of patients are plagued with long lasting or
permanent residual effects, whose severity, rate of development and resolution after treatment vary
largely between survivors. At the same time, patient reported outcomes (PROs) offer important
information that could be critical for the efficient detection and resolution of long term effects. However, the
interpretation of PRO repositories is plagued by data and analysis issues which so far have prevented
their practical use in clinical care, including missing or incomplete data, co-occurence of multiple
symptoms, variability across populations and across time, and, in the case of HNC and other spatially-
dependent cancers, further symptom dependency on the anatomical location of the tumors and their proximity
to organs at risk.
We propose to develop validated, patient-specific models to interpret HNC PROs in order to
inform individual treatment and care decisions for patients. Our data science approach
circumvents limitations in the state of the art by accounting longitudinally for PRO symptom clusters
and their dynamics over time, while handling incomplete data, by incorporating patient- specific bioimaging
markers and spatial dose data pre- and during therapy, by calibrating for inter-patient variability, and by
predicting symptom development and computing clinical action signals for a new patient based on cohorts of
similar patients.
From a clinical perspective, our integrative data science approach is novel in the field of cancer
therapy, through its leveraging of existing patient repositories and similar cohorts, its symptom- cluster
analytics, and its integration of heterogeneous data sources, including patient reported outcomes and
quantitative bioimaging data. The resulting methodology will mark a significant advance in biomedical
computing because it will be able to identify early specific patients who are at risk for long lasting or
permanent treatment-induced residual effects, and will thus enable clinicians to adapt care to the individual
patient level.
The proposed supplement application extends the methodological approach of the parent award by
incorporating radiation dosimetry data, undertaken within a career development plan designed to enhance and
accelerate the capacity of the applicant, who is from a background underrepresented in biomedical sciences,
transition to mentored and independent investigator status, thus enhancing cancer research workforce diversity
under this program.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GUADALUPE CANAHUATE其他文献
GUADALUPE CANAHUATE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GUADALUPE CANAHUATE', 18)}}的其他基金
Longitudinal Spatial-Nonspatial Decision Support for Competing Outcomes in Head and Neck Cancer Therapy
头颈癌治疗竞争结果的纵向空间-非空间决策支持
- 批准号:
10185481 - 财政年份:2021
- 资助金额:
$ 7.16万 - 项目类别:
Longitudinal Spatial-Nonspatial Decision Support for Competing Outcomes in Head and Neck Cancer Therapy
头颈癌治疗竞争结果的纵向空间-非空间决策支持
- 批准号:
10524196 - 财政年份:2021
- 资助金额:
$ 7.16万 - 项目类别:
Longitudinal Spatial-Nonspatial Decision Support for Competing Outcomes in Head and Neck Cancer Therapy
头颈癌治疗竞争结果的纵向空间-非空间决策支持
- 批准号:
10359180 - 财政年份:2021
- 资助金额:
$ 7.16万 - 项目类别:
Longitudinal Spatial-Nonspatial Decision Support for Competing Outcomes in Head and Neck Cancer Therapy
头颈癌治疗竞争结果的纵向空间-非空间决策支持
- 批准号:
10582612 - 财政年份:2021
- 资助金额:
$ 7.16万 - 项目类别:
QuBBD: Precision E –Radiomics for Dynamic Big Head & Neck Cancer Data
QuBBD:Precision E – 动态大头放射组学
- 批准号:
9762879 - 财政年份:2017
- 资助金额:
$ 7.16万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 7.16万 - 项目类别:
Research Grant