Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
基本信息
- 批准号:10377257
- 负责人:
- 金额:$ 0.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-06 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAmino AcidsBase Excision RepairsBindingBiochemicalCancer EtiologyCellsChemistryComplexDNADNA BindingDNA Binding DomainDNA DamageDNA RepairDNA Repair GeneDNA Repair PathwayDNA biosynthesisDNA lesionDNA metabolismDNA-Protein InteractionDefectDiseaseEnvironmental CarcinogensEnzyme InteractionEnzymesExposure toFluorescenceFoundationsGenetic RecombinationGenomic InstabilityGoalsHandHereditary DiseaseIndividualInvestigationKnowledgeLabelLengthLesionMalignant NeoplasmsMetabolicMethodologyModelingMutationNucleotide Excision RepairPhosphorylationPlayPositioning AttributePost-Translational Protein ProcessingProteinsRadiationReporterResearchRoleSingle-Stranded DNASpecificityTherapeutic InterventionTimeToxic Environmental SubstancesWorkXPA genebaseds-DNAfluorophorerecruitrepairedreplication factor Aresponse
项目摘要
SUMMARY
Exposure to environmental toxins, radiation and errors in endogenous DNA metabolism give rise to DNA
damage. Knowledge of the cellular DNA repair mechanisms that correct such DNA lesions are vital towards
combating genomic instability – a prevailing cause of cancers and associated disorders. To correct such errors,
double stranded DNA is unwound and the transiently opened single-stranded DNA (ssDNA) is protected and
coated by Replication Protein A (RPA), a high affinity multi-domain enzyme. Formation of RPA-ssDNA
complexes trigger the DNA repair checkpoint response and is a key step in activating most DNA repair pathways.
ssDNA-bound by RPA is handed-off to lesion-specific DNA repair proteins. The precise mechanisms of how this
functional specificity is achieved is poorly resolved. Towards addressing this gap in knowledge, our long-term
goals are to answer the following questions: a) RPA physically interacts with over two dozen DNA processing
enzymes; how are these interactions determined and prioritized? b) RPA binds to ssDNA with high affinity (KD
>10-10 M); how do DNA metabolic enzymes that bind to DNA with micromolar affinities remove RPA? c) Does
RPA play a role in positioning the recruited enzymes (with appropriate polarity) onto the DNA? d) How are the
DNA and protein interaction activities of RPA tuned by post translational modifications? To address these
questions, and to investigate the dynamics of RPA in the presence of multiple other DNA binding enzymes, we
have successfully developed an experimental strategy where the individual DNA binding domains (DBDs) of
RPA are labeled with a fluorophore. Upon binding to ssDNA, a robust change in fluorescence is observed and
thus serves as a real-time reporter of its dynamics on DNA. We achieved this through incorporation of non-
canonical amino acids and attachment of fluorophores using strain promoted click chemistry. Using this
methodology, we have uncovered how each domain within RPA binds/dissociates on ssDNA and present a new
paradigm for RPA function. There are six distinct subdomains (A - F) in RPA and, for over three decades, DBD-
A & B have been thought to bind with highest affinity based on biochemical investigation of isolated DBDs. These
findings have served as a foundation for all models of RPA in DNA replication, repair and recombination. Our
work capturing RPA dynamics in the full-length context reveals the opposite, where DBDs A & B are highly
dynamic whereas DBDs C & D are stable. These startling findings alter the existing paradigm for RPA function
and form the basis of the proposed work investigating how specific RPA interacting proteins (RIPs) gain access
to DNA. Specifically, RPA modeling by NEIL1 and UNG2 during base excision repair (Aim 1) and by XPA during
nucleotide excision repair (Aim 2) will be investigated. In addition, the role of phosphorylation in determining RPA
specificity in DNA repair will be explored (Aim 3). Results from the proposed work will delineate how RIPs interact
with RPA, remodel its DBDs and gain access to the buried ssDNA.
总结
暴露于环境毒素、辐射和内源性DNA代谢的错误引起DNA
损害细胞DNA修复机制的知识,纠正这种DNA损伤是至关重要的,
对抗基因组不稳定性--癌症和相关疾病的主要原因。为了纠正这些错误,
双链DNA被解绕,瞬时打开的单链DNA(ssDNA)被保护,
由复制蛋白A(RPA)包被,RPA是一种高亲和力的多结构域酶。RPA-ssDNA的形成
复合物触发DNA修复检查点反应,是激活大多数DNA修复途径的关键步骤。
RPA结合的ssDNA被传递给损伤特异性DNA修复蛋白。这一过程的精确机制
实现的功能特异性很难分辨。为了解决这一知识差距,我们的长期
目标是回答以下问题:a)RPA与二十多个DNA加工过程发生物理相互作用
酶;这些相互作用是如何确定和优先考虑的?B)RPA以高亲和力(KD)结合ssDNA
>10-10 M);以微摩尔亲和力与DNA结合的DNA代谢酶如何去除RPA?(c)是否
RPA在将招募的酶(具有适当的极性)定位到DNA上方面发挥作用?(二)如何
翻译后修饰调节RPA的DNA和蛋白质相互作用活性?解决这些
问题,并研究RPA在多种其他DNA结合酶存在下的动力学,我们
已经成功地开发了一种实验策略,其中单个DNA结合结构域(DBD)
RPA用荧光团标记。在与ssDNA结合后,观察到荧光的强烈变化,
因此可以作为其在DNA上动态的实时报告者。我们通过合并非-
典型氨基酸和使用应变促进的点击化学的荧光团的连接。使用此
方法,我们已经揭示了RPA内的每个结构域如何在ssDNA上结合/解离,并提出了一个新的
RPA功能的范例。RPA中有六个不同的子域(A-F),三十多年来,DBD-
基于分离的DBD的生物化学研究,A和B被认为以最高亲和力结合。这些
这些发现为RPA在DNA复制、修复和重组中的所有模型奠定了基础。我们
在全长上下文中捕获RPA动态的工作揭示了相反的情况,其中DBD A和B高度
动态的,而DBD C & D是稳定的。这些惊人的发现改变了RPA功能的现有模式
并形成了研究特定RPA相互作用蛋白(RIP)如何进入
到DNA具体地,在碱基切除修复(Aim 1)期间通过NEIL 1和UNG 2以及在碱基切除修复(Aim 2)期间通过XPA进行RPA建模。
将研究核苷酸切除修复(Aim 2)。此外,磷酸化在决定RPA中的作用
将探索DNA修复的特异性(目的3)。结果从拟议的工作将描绘如何RIP互动
用RPA改造它的DBD并获得被掩埋的ssDNA
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edwin Antony其他文献
Edwin Antony的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edwin Antony', 18)}}的其他基金
Coordination of DNA Metabolism by Replication Protein A
复制蛋白 A 协调 DNA 代谢
- 批准号:
10623523 - 财政年份:2023
- 资助金额:
$ 0.98万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10589636 - 财政年份:2022
- 资助金额:
$ 0.98万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10576598 - 财政年份:2022
- 资助金额:
$ 0.98万 - 项目类别:
Acquisition of an Optima Analytical Ultracentrifuge
购买 Optima 分析超速离心机
- 批准号:
10177290 - 财政年份:2021
- 资助金额:
$ 0.98万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER supplement
BER 和 NER 补充中损伤修复过程中 DNA 传递的机制
- 批准号:
9895224 - 财政年份:2019
- 资助金额:
$ 0.98万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10810537 - 财政年份:2019
- 资助金额:
$ 0.98万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
10334423 - 财政年份:2019
- 资助金额:
$ 0.98万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
9981216 - 财政年份:2019
- 资助金额:
$ 0.98万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10015322 - 财政年份:2019
- 资助金额:
$ 0.98万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10238051 - 财政年份:2019
- 资助金额:
$ 0.98万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 0.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 0.98万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 0.98万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 0.98万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 0.98万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 0.98万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 0.98万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 0.98万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 0.98万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 0.98万 - 项目类别:
Continuing Grant