Mechanisms of DNA hand-off during lesion repair in BER and NER supplement
BER 和 NER 补充中损伤修复过程中 DNA 传递的机制
基本信息
- 批准号:9895224
- 负责人:
- 金额:$ 9.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-06 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:A-Form DNAAddressAffectAffinityAmino AcidsBase Excision RepairsBindingBinding ProteinsBinding SitesBiochemicalCancer EtiologyCancerousCellsChemistryComplexDNADNA BindingDNA Binding DomainDNA DamageDNA RepairDNA Repair EnzymesDNA Repair GeneDNA Repair PathwayDNA biosynthesisDNA damage checkpointDNA glycosylaseDNA lesionDNA-Protein InteractionDNA-dependent protein kinaseDataDefectDiseaseEnvironmental CarcinogensEnzyme InteractionEnzymesEventExposure toFluorescenceFoundationsGenetic RecombinationGenomeGenomic InstabilityGoalsHandHereditary DiseaseIndividualInvestigationKineticsKnowledgeLabelLeadLengthLesionMalignant NeoplasmsMetabolicMetabolismMethodologyModelingMonitorMutationN-terminalNucleotide Excision RepairPhosphopeptidesPhosphorylationPlayPositioning AttributePost-Translational Protein ProcessingProcessProtein Binding DomainProteinsRadiationReporterResearchRoleSingle-Stranded DNASiteSpecificityStructureSystemTestingTherapeutic InterventionTimeToxic Environmental SubstancesWinged HelixWorkXPA genebasecombatds-DNAenvironmental agentfluorophoregenome integrityrecruitrepairedreplication factor Aresponserole modelscaffoldsingle moleculexeroderma pigmentosum group A complementing protein
项目摘要
Exposure to environmental toxins, radiation and errors in endogenous DNA metabolism give rise to DNA
damage. Knowledge of the cellular DNA repair mechanisms that correct such DNA lesions are vital towards
combating genomic instability – a prevailing cause of cancers and associated disorders. To correct such errors,
double stranded DNA is unwound and the transiently opened single-stranded DNA (ssDNA) is protected and
coated by Replication Protein A (RPA), a high affinity multi-domain enzyme. Formation of RPA-ssDNA
complexes trigger the DNA repair checkpoint response and is a key step in activating most DNA repair pathways.
ssDNA-bound by RPA is handed off to lesion-specific DNA repair proteins. The precise mechanisms of how this
functional specificity is achieved is poorly resolved. Towards addressing this gap in knowledge, our long-term
goals are to answer the following questions: a) RPA physically interacts with over two dozen DNA processing
enzymes; how are these interactions determined and prioritized? b) RPA binds to ssDNA with high affinity (KD
>10-10 M); how do DNA metabolic enzymes that bind to DNA with micromolar affinities remove RPA? c) Does
RPA play a role in positioning the recruited enzymes (with appropriate polarity) onto the DNA? d) How are the
DNA and protein interaction activities of RPA tuned by post translational modifications? To address these
questions, and to investigate the dynamics of RPA in the presence of multiple other DNA binding enzymes, we
have successfully developed an experimental strategy where the individual DNA binding domains (DBDs) of
RPA are labeled with a fluorophore. Upon binding to ssDNA, a robust change in fluorescence is observed and
thus serves as a real-time reporter of its dynamics on DNA. We achieved this through incorporation of noncanonical
amino acids and attachment of fluorophores using strain promoted click chemistry. Using this
methodology, we have uncovered how each domain within RPA binds/dissociates on ssDNA and presents a
new paradigm for RPA function. There are four DBDs (A, B, C and D) in RPA and, for over three decades, DBDA
& B have been thought to bind with highest affinity based on biochemical investigation of isolated DBDs. These
findings have served as a foundation for all models of RPA in DNA replication, repair and recombination. Our
work capturing RPA dynamics in the full-length context reveals the opposite, where DBDs A & B are highly
dynamic whereas DBDs C & D are stable. These startling findings completely alter the existing paradigm for
RPA function and form the basis of the proposed work investigating how specific RPA interacting proteins (RIPs)
gain access to DNA. Specifically, RPA modeling by NEIL1 and UNG2 during base excision repair (Aim 1) and
by XPA during nucleotide excision repair (Aim 2) will be investigated. In addition, the role of phosphorylation in
determining RPA specificity in DNA repair will be explored (Aim 3). Results from the proposed work will delineate
how RIPs interact with RPA, remodel its DBDs and gain access to the buried ssDNA.
暴露于环境毒素、辐射和内源性DNA代谢错误会导致DNA
损坏。对纠正这种DNA损伤的细胞DNA修复机制的了解对于
与基因组不稳定作斗争--这是癌症和相关疾病的主要原因。为了纠正这样的错误,
双链DNA解开,瞬时开放的单链DNA(SsDNA)受到保护,
包被复制蛋白A(RPA),这是一种高亲和力的多结构域酶。RPA-单链DNA的形成
复合体触发DNA修复检查点反应,是激活大多数DNA修复途径的关键步骤。
由RPA结合的单链DNA被移交给病变特异的DNA修复蛋白。这一过程的确切机制
功能特异性的实现是解决不了的。为了解决这一知识差距,我们的长期计划
目标是回答以下问题:a)RPA与二十多个DNA处理过程进行物理交互
酶;这些相互作用是如何确定和优先考虑的?B)RPA以高亲和力(Kd)与单链DNA结合
>;10-10M);与DNA具有微摩尔亲和力的DNA代谢酶如何去除RPA?C)确实如此
RPA在将招募的酶(以适当的极性)定位到DNA上起到作用吗?D)大家好吗?
翻译后修饰调节RPA的DNA和蛋白质相互作用活性?要解决这些问题
问题,并研究RPA在多种其他DNA结合酶存在时的动力学,我们
已经成功地开发出一种实验策略,其中单个DNA结合结构域(DBD)
RPA用荧光团标记。当与单链DNA结合时,观察到荧光的强烈变化,并
因此,它在DNA上的动态是一个实时记者。我们通过将非规范的
利用菌株的氨基酸和荧光团的附着促进了点击化学。使用这个
方法,我们已经揭示了RPA中的每个结构域如何与单链DNA结合/解离,并呈现出一种
RPA功能的新范式。RPA中有四个DBD(A、B、C和D),三十多年来,DBDA
根据对分离的DBD的生化研究,&B被认为具有最高的亲和力。这些
这些发现为RPA在DNA复制、修复和重组方面的所有模型奠定了基础。我们的
在完整环境中捕获RPA动态的工作揭示了相反的情况,其中DBD A和B高度
动态的,而DBD C&D是稳定的。这些惊人的发现完全改变了现有的
RPA的功能并构成拟议工作的基础,该工作研究特定的RPA相互作用蛋白(RIP)如何
获取DNA。具体而言,在碱基切除修复期间由NEIL1和UNG2进行的RPA建模(目标1)和
在核苷酸切除修复过程中的XPA(目标2)将被调查。此外,磷酸化在蛋白合成中的作用
将探索在DNA修复中确定RPA的特异性(目标3)。拟议工作的结果将勾勒出
RIPs如何与RPA相互作用,如何重塑其DBD,以及如何获得埋藏的ssDNA。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edwin Antony其他文献
Edwin Antony的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edwin Antony', 18)}}的其他基金
Coordination of DNA Metabolism by Replication Protein A
复制蛋白 A 协调 DNA 代谢
- 批准号:
10623523 - 财政年份:2023
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10589636 - 财政年份:2022
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10576598 - 财政年份:2022
- 资助金额:
$ 9.84万 - 项目类别:
Acquisition of an Optima Analytical Ultracentrifuge
购买 Optima 分析超速离心机
- 批准号:
10177290 - 财政年份:2021
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
10377257 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10810537 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
10334423 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of DNA hand-off during lesion repair in BER and NER
BER 和 NER 损伤修复过程中 DNA 传递的机制
- 批准号:
9981216 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10015322 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
Mechanisms of RPA, Recombinases, and Mediators in Homologous Recombination
同源重组中 RPA、重组酶和介体的机制
- 批准号:
10238051 - 财政年份:2019
- 资助金额:
$ 9.84万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Research Grant