Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
基本信息
- 批准号:10374139
- 负责人:
- 金额:$ 56.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AblationAccelerationAddressAdultAffectAgeAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaBasement membraneBiologyBlood - brain barrier anatomyBlood VesselsBlood capillariesBlood flowBrainCellsCerebral cortexCerebrovascular DisordersCommunicationComplementDataDevelopmentDiseaseDrug or chemical Tissue DistributionEndotheliumEventGene ExpressionGeneticGoalsHealthHistologicHypoxiaImageImpairmentInvadedInvestigationKnowledgeLifeLightMaintenanceMeasuresMethodsModelingMusMutant Strains MiceNeurodegenerative DisordersNeuronal DysfunctionNeuronsOpticsOxygenPDGF inhibitionPDGFRB genePeptidesPericytesPharmacologyPhysiologicalPlatelet-Derived Growth FactorPlatelet-Derived Growth Factor beta ReceptorProcessRegulationReportingResolutionRoleSeveritiesSignal PathwaySignal TransductionStretchingStructureSynapsesTestingTheftTissuesWorkage relatedagedaging brainbrain dysfunctioncapillary bedcell typecerebral capillarycerebrovascularcerebrovascular healthgenetic manipulationhemodynamicsimaging probeimprovedin vivoin vivo calcium imagingin vivo imagingin vivo two-photon imaginginnovationinsightknock-downmiddle agemultidisciplinaryneurovascularnovelplatelet-derived growth factor BBpreservationrecruitrelating to nervous systemrepair strategyrepairedreparative processresponsesynaptic functiontissue oxygenationtwo photon microscopytwo-photon
项目摘要
Project Summary
Pericytes are specialized mural cells in the basement membrane of brain capillaries. Their contact and
communication with the endothelium is critical for multiple aspects of vascular function, including control of
microvascular blood flow and blood-brain barrier integrity. There is significant evidence that increased loss of
pericytes occurs during Alzheimer's disease and Alzheimer's-related dementias, and that this loss causes
accelerated degradation of microvascular integrity, leading to neuronal dysfunction. Preserving pericyte-
endothelial contact may therefore improve cerebrovascular function in these neurodegenerative diseases.
However, there remain fundamental gaps in knowledge on how the adult brain responds to and recovers from
pericyte loss in vivo. We recently discovered that pericytes of the brain undergo a repair strategy to maintain
coverage of the endothelium in the event of pericyte loss (Berthiaume et al. Cell Reports, 2018, 22(1):8-16).
Pericytes can structurally remodel their far-reaching processes to invade endothelial regions that lack pericyte
contact. The goal of this project is to investigate this novel facet of brain pericyte biology and its role in
maintenance of capillary function. Our innovative approach will assess the effect of pericyte loss and repair in a
completely physiological setting. We will use high-resolution, in vivo two-photon microscopy to image and
selectively ablate pericytes, while assessing capillary hemodynamics, tissue oxygenation, and neural synaptic
activity. This approach provides an exceptionally clear view of how the brain responds to pericyte loss, and the
reparative responses that are mounted over days. In Aim 1, we will determine how the pericyte remodeling
mechanism manages graded increases in severity of pericyte loss. We will examine the physiological
consequence of this pericyte loss on capillary flow, structure and integrity, and determine whether the repair
capacity is diminished with increasing age. In Aim 2, we will examine how pericyte loss alters the
microstructure of tissue oxygen distribution and neuronal synaptic function using novel imaging probes. In Aim
3, we will determine whether pericyte remodeling is altered by activation or inhibition of PDGF-B/PDGFRβ, a
key signaling pathway for developmental recruitment of pericytes to their peri-endothelial niche. If successful,
our aims will establish whether it is useful to restore pericyte coverage in conditions such as Alzheimer's
disease and related dementias. We will obtain information on how selective pericyte loss in adult and aged
brain affects the dynamics of capillary function. Finally, we will establish novel methods to quantify and
manipulate pericyte remodeling, allowing the phenomenon to be studied broadly in other models of
cerebrovascular disease.
项目摘要
周细胞是一种特殊的壁细胞,位于脑毛细血管基底膜上。他们的联系方式和
与内皮细胞的沟通对血管功能的多个方面至关重要,包括控制
微血管血流和血脑屏障的完整性。有重要证据表明,
周细胞在阿尔茨海默病和阿尔茨海默氏症相关的痴呆期间发生,这种缺失导致
微血管完整性加速退化,导致神经元功能障碍。保存周细胞-
因此,内皮接触可以改善这些神经退行性疾病的脑血管功能。
然而,关于成人大脑如何反应和恢复的知识仍然存在根本空白
活体内周细胞丢失。我们最近发现,大脑的周细胞经历一种修复策略来维持
周细胞丢失时内皮细胞的覆盖率(Berthiaume等人细胞报告,2018,22(1):8-16)。
周细胞可以在结构上重塑其影响深远的过程,以侵入缺乏周细胞的内皮区域。
联系。该项目的目标是研究脑周细胞生物学的这一新方面及其在
维持毛细血管功能。我们的创新方法将评估周细胞丢失和修复的影响
完全生理性的环境。我们将使用高分辨率的活体双光子显微镜来成像和
选择性地消融周细胞,同时评估毛细血管血流动力学、组织氧合和神经突触
活动。这种方法提供了一个非常清晰的视角,了解大脑如何应对周细胞丢失,以及
几天后积累起来的修复性反应。在目标1中,我们将确定周细胞如何重塑
机制管理周细胞丢失严重程度的分级增加。我们会检查生理上的
这种周细胞丢失对毛细血管流动、结构和完整性的后果,并决定是否修复
随着年龄的增长,能力会减弱。在目标2中,我们将研究周细胞丢失如何改变
使用新型成像探针研究组织氧分布和神经元突触功能的微观结构。在AIM
3,我们将确定周细胞重塑是通过激活还是抑制PDGF-B/PDGFFRβ,a
周细胞发育募集到其内皮周壁龛的关键信号通路。如果成功,
我们的目标将确定在阿尔茨海默氏症等情况下恢复周细胞覆盖率是否有用
疾病和相关痴呆症。我们将获得有关成人和老年人选择性周细胞丢失的信息
大脑影响毛细血管功能的动态变化。最后,我们将建立新的方法来量化和
操纵周细胞重塑,使这一现象在其他模型中得到广泛研究
脑血管疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andy Y Shih其他文献
Andy Y Shih的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andy Y Shih', 18)}}的其他基金
In vivo two-photon imaging of vascular invasion and stem cell translocation in calvarial bone
颅骨血管侵袭和干细胞易位的体内双光子成像
- 批准号:
10603163 - 财政年份:2023
- 资助金额:
$ 56.21万 - 项目类别:
Pericyte control of capillary perfusion in the Alzheimer's disease brain
阿尔茨海默病大脑中毛细血管灌注的周细胞控制
- 批准号:
10655813 - 财政年份:2023
- 资助金额:
$ 56.21万 - 项目类别:
Brain Drain: In Vivo Optical Interrogation of Venular Function in Gray and White Matter
脑流失:灰质和白质中小静脉功能的体内光学询问
- 批准号:
10463455 - 财政年份:2022
- 资助金额:
$ 56.21万 - 项目类别:
Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
- 批准号:
10163765 - 财政年份:2020
- 资助金额:
$ 56.21万 - 项目类别:
Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
- 批准号:
9894994 - 财政年份:2020
- 资助金额:
$ 56.21万 - 项目类别:
Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
- 批准号:
10576299 - 财政年份:2020
- 资助金额:
$ 56.21万 - 项目类别:
Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
- 批准号:
10783214 - 财政年份:2020
- 资助金额:
$ 56.21万 - 项目类别:
Optical Interrogation of Venular Function in Cerebral Gray and White Matter
大脑灰质和白质中静脉功能的光学询问
- 批准号:
10221601 - 财政年份:2020
- 资助金额:
$ 56.21万 - 项目类别:
Diversity Supplement: Pericyte structural plasticity and cerebrovascular health
多样性补充:周细胞结构可塑性与脑血管健康
- 批准号:
10605744 - 财政年份:2020
- 资助金额:
$ 56.21万 - 项目类别:
The effects of amyloid beta on pericyte remodeling and brain capillary function in vivo
β淀粉样蛋白对体内周细胞重塑和脑毛细血管功能的影响
- 批准号:
9898221 - 财政年份:2019
- 资助金额:
$ 56.21万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 56.21万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 56.21万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 56.21万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 56.21万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 56.21万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 56.21万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 56.21万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 56.21万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 56.21万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 56.21万 - 项目类别:
Standard Grant














{{item.name}}会员




