Multiscale transcriptional architecture of the human brain

人脑的多尺度转录结构

基本信息

项目摘要

In America, nearly half of individuals will meet diagnostic criteria for a mental disorder at some point in their life. Although most mental disorders are moderately to highly heritable, their underlying genetic architecture is complex. This complexity has hindered efforts to identify biomarkers and develop diagnostic tests and therapeutic strategies for patients. Notwithstanding this complexity, it is reasonable to expect that genetic variants that predispose individuals to mental disorders will alter gene expression in the brain. Many studies have tried to identify transcriptional phenotypes of mental disorders in postmortem brain samples, but the use of bulk tissue has resulted in variable cellular composition across samples and datasets, obscuring transcriptional phenotypes and their cellular origins. Recent advances in single-cell (SC) and single-nucleus (SN) transcriptional profiling offer a new approach to this problem, but these techniques also have technical and statistical limitations. As such, there remain critical gaps in our understanding of how risk factors for mental disorders perturb gene expression in the human brain. A major impediment to identifying such perturbations is the absence of an analytical framework for predicting gene expression in the human brain regardless of sampling strategy. The purpose of this application is to test the hypothesis that the covariance structure of neurobiological transcriptomes provides such a framework. In Aim 1, we will assess the concordance of cell-type signatures and transcriptional covariation in bulk and SC/SN gene expression data from human brain samples. In Aim 2, we will clarify optimal experimental and analytical parameters for identifying reproducible transcriptional signatures of rare cell types/states in human brain samples. And in Aim 3, we will exploit reproducible transcriptional covariation in bulk and SC/SN gene expression data to identify cellular and molecular phenotypes of mental disorders and corresponding genetic variants. Collectively, the proposed studies will have a positive impact by promoting rigor and reproducibility in neurobiological research through meta-analysis and predictive modeling, while simultaneously advancing new strategies for identifying cellular and molecular phenotypes of mental disorders that can be readily applied to other molecular species and pathological conditions.
在美国,近一半的人会在一生中的某个时候达到精神障碍的诊断标准。 尽管大多数精神障碍是中度到高度可遗传的,但它们潜在的遗传结构是 很复杂。这种复杂性阻碍了为患者确定生物标记物和开发诊断测试和治疗策略的努力。尽管有这种复杂性,但我们有理由预计,基因变异 易患精神障碍的人会改变大脑中的基因表达。许多研究已经尝试过 为了在死后大脑样本中确定精神障碍的转录表型,但使用批量组织导致了样本和数据集之间的细胞组成不同,掩盖了转录表型及其细胞来源。单细胞和单核转录的研究进展 分析为这个问题提供了一种新的方法,但这些技术也有技术和统计上的限制。因此,在我们对精神障碍的风险因素如何扰乱的理解上仍然存在严重的差距 人类大脑中的基因表达。识别此类扰动的一个主要障碍是缺少 用于预测人脑中基因表达的分析框架,而不考虑采样策略。这个 这一应用的目的是检验神经生物转录本的协方差结构提供了这样一个框架的假设。在目标1中,我们将评估来自人脑样本的大量和SC/SN基因表达数据中细胞类型特征和转录协变的一致性。在目标2中,我们将 阐明最佳实验和分析参数,以确定可重现的转录签名 人脑样本中罕见的细胞类型/状态。在目标3中,我们将利用批量和SC/SN基因表达数据中可重现的转录共变来鉴定精神障碍的细胞和分子表型 以及相应的遗传变异。总的来说,拟议的研究将产生积极的影响,通过促进 通过荟萃分析和预测建模在神经生物学研究中的严密性和重复性,同时提出识别精神障碍的细胞和分子表型的新策略 可以很容易地应用于其他分子物种和病理条件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Clark Oldham其他文献

Michael Clark Oldham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Clark Oldham', 18)}}的其他基金

Multiscale transcriptional architecture of the human brain
人脑的多尺度转录结构
  • 批准号:
    10001244
  • 财政年份:
    2020
  • 资助金额:
    $ 59.98万
  • 项目类别:
Multiscale transcriptional architecture of the human brain
人脑的多尺度转录结构
  • 批准号:
    10606491
  • 财政年份:
    2020
  • 资助金额:
    $ 59.98万
  • 项目类别:
Decoding the molecular basis of cellular identity in adult malignant gliomas
解码成人恶性神经胶质瘤细胞身份的分子基础
  • 批准号:
    10533784
  • 财政年份:
    2019
  • 资助金额:
    $ 59.98万
  • 项目类别:
Decoding the molecular basis of cellular identity in adult malignant gliomas
解码成人恶性神经胶质瘤细胞身份的分子基础
  • 批准号:
    10303024
  • 财政年份:
    2019
  • 资助金额:
    $ 59.98万
  • 项目类别:
Decoding the molecular basis of cellular identity in adult malignant gliomas
解码成人恶性神经胶质瘤细胞身份的分子基础
  • 批准号:
    10058258
  • 财政年份:
    2019
  • 资助金额:
    $ 59.98万
  • 项目类别:
Decoding the molecular basis of cellular identity in the human brain
解码人脑细胞身份的分子基础
  • 批准号:
    10306356
  • 财政年份:
    2017
  • 资助金额:
    $ 59.98万
  • 项目类别:
Decoding the molecular basis of cellular identity in the human brain
解码人脑细胞身份的分子基础
  • 批准号:
    10065525
  • 财政年份:
    2017
  • 资助金额:
    $ 59.98万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 59.98万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 59.98万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 59.98万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 59.98万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 59.98万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 59.98万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 59.98万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 59.98万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 59.98万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.98万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了