Multiscale transcriptional architecture of the human brain
人脑的多尺度转录结构
基本信息
- 批准号:10606491
- 负责人:
- 金额:$ 59.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAmericanArchitectureAutopsyBiological ProcessBipolar DisorderBrainCell NucleusCellsCodeCommunitiesComplexConsensusDataData SetDetectionDevelopmentDiagnostic testsDiseaseEventGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGenetic TranscriptionGoalsHealthHeritabilityHeterogeneityHistologicHumanIndividualLifeMental disordersMeta-AnalysisModelingMolecularMolecular ProfilingNeurobiologyOutcomePathologicPatientsPhenotypePublishingQuantitative Trait LociReproducibilityResearchResourcesRisk FactorsSample SizeSamplingSchizophreniaStatistical ModelsStructureTechniquesTestingTherapeuticTissuesValidationVariantbiological researchbiological systemsbiomarker identificationcareercell typecloud baseddesigndiagnostic criteriadifferential expressioneffective therapygenetic architecturegenetic varianthuman datainnovationmolecular phenotypenovelnovel strategiespredictive modelingsingle nucleus RNA-sequencingtranscriptome
项目摘要
In America, nearly half of individuals will meet diagnostic criteria for a mental disorder at some point in their life.
Although most mental disorders are moderately to highly heritable, their underlying genetic architecture is
complex. This complexity has hindered efforts to identify biomarkers and develop diagnostic tests and therapeutic strategies for patients. Notwithstanding this complexity, it is reasonable to expect that genetic variants
that predispose individuals to mental disorders will alter gene expression in the brain. Many studies have tried
to identify transcriptional phenotypes of mental disorders in postmortem brain samples, but the use of bulk tissue has resulted in variable cellular composition across samples and datasets, obscuring transcriptional phenotypes and their cellular origins. Recent advances in single-cell (SC) and single-nucleus (SN) transcriptional
profiling offer a new approach to this problem, but these techniques also have technical and statistical limitations. As such, there remain critical gaps in our understanding of how risk factors for mental disorders perturb
gene expression in the human brain. A major impediment to identifying such perturbations is the absence of an
analytical framework for predicting gene expression in the human brain regardless of sampling strategy. The
purpose of this application is to test the hypothesis that the covariance structure of neurobiological transcriptomes provides such a framework. In Aim 1, we will assess the concordance of cell-type signatures and transcriptional covariation in bulk and SC/SN gene expression data from human brain samples. In Aim 2, we will
clarify optimal experimental and analytical parameters for identifying reproducible transcriptional signatures of
rare cell types/states in human brain samples. And in Aim 3, we will exploit reproducible transcriptional covariation in bulk and SC/SN gene expression data to identify cellular and molecular phenotypes of mental disorders
and corresponding genetic variants. Collectively, the proposed studies will have a positive impact by promoting
rigor and reproducibility in neurobiological research through meta-analysis and predictive modeling, while simultaneously advancing new strategies for identifying cellular and molecular phenotypes of mental disorders that
can be readily applied to other molecular species and pathological conditions.
在美国,将近一半的人在他们生命中的某个阶段会符合精神障碍的诊断标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Clark Oldham其他文献
Michael Clark Oldham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Clark Oldham', 18)}}的其他基金
Multiscale transcriptional architecture of the human brain
人脑的多尺度转录结构
- 批准号:
10001244 - 财政年份:2020
- 资助金额:
$ 59.41万 - 项目类别:
Multiscale transcriptional architecture of the human brain
人脑的多尺度转录结构
- 批准号:
10374855 - 财政年份:2020
- 资助金额:
$ 59.41万 - 项目类别:
Decoding the molecular basis of cellular identity in adult malignant gliomas
解码成人恶性神经胶质瘤细胞身份的分子基础
- 批准号:
10533784 - 财政年份:2019
- 资助金额:
$ 59.41万 - 项目类别:
Decoding the molecular basis of cellular identity in adult malignant gliomas
解码成人恶性神经胶质瘤细胞身份的分子基础
- 批准号:
10303024 - 财政年份:2019
- 资助金额:
$ 59.41万 - 项目类别:
Decoding the molecular basis of cellular identity in adult malignant gliomas
解码成人恶性神经胶质瘤细胞身份的分子基础
- 批准号:
10058258 - 财政年份:2019
- 资助金额:
$ 59.41万 - 项目类别:
Decoding the molecular basis of cellular identity in the human brain
解码人脑细胞身份的分子基础
- 批准号:
10306356 - 财政年份:2017
- 资助金额:
$ 59.41万 - 项目类别:
Decoding the molecular basis of cellular identity in the human brain
解码人脑细胞身份的分子基础
- 批准号:
10065525 - 财政年份:2017
- 资助金额:
$ 59.41万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 59.41万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 59.41万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 59.41万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 59.41万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 59.41万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 59.41万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 59.41万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 59.41万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 59.41万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 59.41万 - 项目类别:
Research Grant