Integrative Informatics Approach to Predict Readmissions and Improve Outcomes in COPD

综合信息学方法预测 COPD 的再入院率并改善预后

基本信息

  • 批准号:
    10397143
  • 负责人:
  • 金额:
    $ 19.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary This proposal for a mentored career development award consists of a training and research plan devised to facilitate Dr. David Jacobs' transition to an independent investigator focusing on the implementation of medication use interventions during the transition from hospital to home for high-needs patients. Dr. Jacobs is a clinical pharmacist with an advanced degree in epidemiology and health services and has significant experience conducting clinical research. The candidate's current research is focused on transition of care interventions. Given the resource intensive nature of these interventions, the sustainability of these programs will heavily depend on identifying and targeting patients at high-risk for hospital readmission. To anticipate such admissions, predictive models have been developed; however, our ability to predict hospital readmissions remains poor. This is likely because detailed social information, which is disproportionately represented in high-needs populations, is typically absent in risk stratification tools. Therefore, the long-term research objective is to build predictive models that combine social information with rich clinical data to individualize care management interventions and reduce readmissions. The specific aims are: (i) to determine social risk factors driving hospital readmissions by conducting semi-structured interviews with patients, their caregivers, and clinicians; (ii) to develop a risk- prediction model using advanced informatics techniques; and (iii) to develop and test the feasibility of a pilot intervention aimed at improving transition strategies. This work will focus on a singular complex condition, chronic obstructive pulmonary disease (COPD), in developing a risk stratification tool in order to improve its predictive performance for identifying high-risk patients. COPD will serve as the model condition since it is one of the major readmission diagnoses, and there exists a high level of complexity following hospital discharge at patients' care transition. This award will provide the applicant with mentor-guided didactic and experiential learning to address the following career development objectives: 1) gain experiential learning in qualitative methodology, 2) advance his knowledge in biomedical informatics and develop predictive models integrating high-dimensional electronic health record data, and 3) increase his understanding of implementation science and gain practical experience in conducting a pragmatic clinical trial. The primary mentor, Dr. Sanjay Sethi, and the mentorship team will work closely to monitor his progress toward independence and will provide him with the guidance and the resources to guarantee his success. The proposed study leverages the extensive resources available at the University at Buffalo to address an important public health issue. Achieving the proposed aims and acquiring these advanced skills will position the candidate to submit successful R01s testing the proposed clinical prediction model and transition strategy in real-world settings. In summary, a comprehensive career development plan in the context of a well-defined training, research, and mentorship structure will allow Dr. Jacobs to emerge as a highly successful, independent clinician-investigator in health services research.
项目摘要 该指导职业发展奖的该建议包括一项培训和研究计划。 促进戴维·雅各布斯博士向独立调查员的过渡,专注于实施 高需求患者从医院到家过渡期间的药物使用干预措施。雅各布斯博士是 具有流行病学和卫生服务高级学位的临床药剂师,拥有丰富的经验 进行临床研究。候选人目前的研究重点是过渡护理干预措施。 鉴于这些干预措施的资源密集型性质,这些计划的可持续性将大大 取决于识别和针对高风险的患者进行医院再入院。预见这样的招生, 已经开发了预测模型;但是,我们预测医院再入院的能力仍然很差。这 可能是因为详细的社会信息(在高需求人群中代表不成比例), 通常在风险分层工具中不存在。因此,长期研究目标是建立预测 将社会信息与丰富的临床数据相结合以个性化护理管理干预措施的模型 并减少再入院。具体目的是:(i)确定驱动医院再入院的社会风险因素 通过对患者,护理人员和临床医生进行半结构化访谈; (ii)发展风险 - 使用高级信息学技术的预测模型; (iii)开发和测试飞行员的可行性 旨在改善过渡策略的干预措施。这项工作将重点放在奇异的复杂条件下 阻塞性肺疾病(COPD),开发风险分层工具以提高其预测性 识别高危患者的表现。 COPD将作为模型条件,因为它是主要的 再入院诊断,并且在患者护理中出院后存在很高的复杂性 过渡。该奖项将为申请人提供导师指导的教学和体验式学习,以解决 以下职业发展目标:1)在定性方法论中获得体验式学习,2) 他在生物医学信息学方面的知识并开发了整合高维电子的预测模型 健康记录数据,以及3)提高他对实施科学的理解并获得实践经验 在进行务实的临床试验中。主要导师Sanjay Sethi博士和指导团队将工作 密切监视他在独立方面的进步,并将为他提供指导和资源 保证他的成功。拟议的研究利用了大学的广泛资源 水牛解决一个重要的公共卫生问题。实现拟议的目标并获得这些先进的目标 技能将定位候选人提交成功的R01测试,以测试拟议的临床预测模型和 现实世界中的过渡策略。总而言之,在背景下制定了全面的职业发展计划 定义明确的培训,研究和指导结构将使Jacobs博士成为高度 成功,独立的临床医生评估卫生服务研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Jacobs其他文献

David Jacobs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Jacobs', 18)}}的其他基金

Integrative Informatics Approach to Predict Readmissions and Improve Outcomes in COPD
综合信息学方法预测 COPD 的再入院率并改善预后
  • 批准号:
    10597170
  • 财政年份:
    2021
  • 资助金额:
    $ 19.24万
  • 项目类别:
Integrative Informatics Approach to Predict Readmissions and Improve Outcomes in COPD
综合信息学方法预测 COPD 的再入院率并改善预后
  • 批准号:
    10215337
  • 财政年份:
    2021
  • 资助金额:
    $ 19.24万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Insomnia and Physical Function in Older Veterans During and After CLC Rehabilitation Admission
老年退伍军人 CLC 康复入院期间和之后的失眠和身体功能
  • 批准号:
    10746207
  • 财政年份:
    2023
  • 资助金额:
    $ 19.24万
  • 项目类别:
Investigators from Novices, a Transdisciplinary Research Education Program to Increase Diversity (INTREPID) in Aging Research
新手研究人员,一项旨在增加衰老研究多样性的跨学科研究教育计划 (INTREPID)
  • 批准号:
    10625709
  • 财政年份:
    2023
  • 资助金额:
    $ 19.24万
  • 项目类别:
RSV I-PREP: Improving Evidence-Based Implementation of RSV Immuno-Prophylaxis Within Ethical and Policy Contexts
RSV I-PREP:在伦理和政策背景下改进 RSV 免疫预防的循证实施
  • 批准号:
    10739713
  • 财政年份:
    2023
  • 资助金额:
    $ 19.24万
  • 项目类别:
The Application of a Theoretical Framework to Assess the Acceptability of a Health-Related Social Needs Screening Tool Among Black Patients In New York City
应用理论框架评估纽约市黑人患者对健康相关社会需求筛查工具的接受程度
  • 批准号:
    10826205
  • 财政年份:
    2023
  • 资助金额:
    $ 19.24万
  • 项目类别:
VT-ESTEEMED
VT-尊崇
  • 批准号:
    10653568
  • 财政年份:
    2023
  • 资助金额:
    $ 19.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了