Modifying High Modulus Hydrogels for Cell Delivery: Intervertebral Disc Repair with Genipin-Crosslinked Fibrin
修饰高模量水凝胶用于细胞输送:用京尼平交联纤维蛋白修复椎间盘
基本信息
- 批准号:10397389
- 负责人:
- 金额:$ 0.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-20 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdhesivesAlginatesAnimalsApoptosisBack PainBindingBiocompatible MaterialsBiologicalBiomechanicsBioreactorsCASP3 geneCattleCell AdhesionCell ProliferationCell SurvivalCell TherapyCellsClinicalCollagenConfocal MicroscopyCrosslinkerDefectDepositionDoctor of PhilosophyEducationEducational process of instructingEncapsulatedEngineeringEquilibriumExhibitsExtracellular MatrixFellowshipFibrinFutureGene ExpressionGenetic TranscriptionGlycosaminoglycansGoalsHealthcareHeightHistologicHumanHydrogelsInjuryIntervertebral disc structureKineticsLabelLeadMeasuresMechanicsMentorshipMicroencapsulationsMicrospheresMissionModelingModulusMorphologyMusculoskeletalNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNatural regenerationNeck PainNutrientOperative Surgical ProceduresOrgan Culture TechniquesOutcomeOxidesPerformancePhenotypePrincipal InvestigatorProceduresPropertyProteinsPublishingQuantitative Reverse Transcriptase PCRReactionRecoveryRecurrent painResearchResearch ProposalsRiskScreening procedureSystemTestingTissue EngineeringTissuesTrainingUrsidae FamilyVertebral columnWorkaggrecanbiomechanical testcareerclinical translationclinically relevantcrosslinkcytotoxicdesigndisabilitydisc regenerationefficacy validationexperiencegenipinhealingimprovedinjuredinnovationinsightintervertebral disk degenerationmechanical loadmultidisciplinarynext generationnovelnucleus pulposuspreventregenerative approachrepair strategyrepairedresponsescaffoldsealsocioeconomicssoft tissuespinal disk injurystandard of caretreatment effect
项目摘要
PROJECT SUMMARY
Back and neck pain are leading causes of global disability, which account for over $135 billion in healthcare
spending. Disabling back pain caused by herniation of the intervertebral disc (IVD) can be alleviated by
discectomy, the surgical standard of care that removes herniated IVD tissue. While effective, discectomy does
not repair annulus fibrosus (AF) defects caused by the herniation, which can lead to accelerated IVD
degeneration, reherniation and recurrent pain. Cell-seeded, adhesive hydrogels are a promising strategy to
prevent these complications because they can immediately seal AF defects and deliver cells for long-term
healing. Engineering such hydrogels for IVD cell delivery is challenging because soft biomaterials typically used
for cell delivery risk herniating in the IVD injury space. On the contrary, high-modulus biomaterials designed to
bear high-magnitude spine loads can hinder the healing capacity of encapsulated cells. The overall goal of this
research proposal is to uniquely integrate principles of cellular microencapsulation, degradable microbeads
(MBs) and high-modulus biomaterials to engineer next-generation biomaterials that promote IVD regeneration
and functional repair. Aim 1 will assess the protective capacity and degradation kinetics of oxidized alginate
(OxAlg) MBs. Aim 2 will characterize the effects of genipin-crosslinked fibrin (FibGen)-OxAlg construct
macroporosity on AF cell phenotype and construct biomechanics. Aim 3 will evaluate the biological and
biomechanical repair responses of FibGen-OxAlg. Our global hypotheses are that OxAlg MBs will protect
AF cells from FibGen hydrogel crosslinking then degrade (Aim 1). Resultant macroporous FibGen-OxAlg
constructs will promote AF cell proliferation and ECM synthesis, leading to enhanced construct
biomechanics (Aim 2). This cell delivery strategy will promote biological and biomechanical repair in ex
vivo IVD organ culture (Aim 3). This work is significant because it develops an easily translatable tissue
engineering strategy to address the critical clinical challenges associated with AF defects; this approach may be
broadly applicable to other musculoskeletal tissues that exhibit limited healing and experience high mechanical
demands, which strongly aligns with the mission of NIAMS. This proposal is highly innovative because no
strategies that repair and regenerate AF defects exist, few published studies use cell-laden MBs as porogens in
templated hydrogel constructs, and none use such constructs in IVD repair. Validating the efficacy of this
biomaterial strategy in a loaded, large animal IVD organ culture system is innovative and significant because
there are few published studies using such a culture system and testing in this manner will accelerate clinical
translation. Completion of the proposed aims will provide the candidate with rigorous multidisciplinary training in
biomaterial synthesis, cell microencapsulation, biomechanical testing and IVD organ culture. Supplemented with
the proposed teaching and mentorship experiences, this fellowship will accelerate the career of a promising PhD
Candidate who is strongly committed to musculoskeletal tissue engineering research and education.
项目总结
背部和颈部疼痛是全球残疾的主要原因,占医疗保健费用的1350亿美元以上
花销。腰椎间盘突出症(IVD)引起的致残背痛可通过以下方法缓解
椎间盘切除术,切除突出的IVD组织的外科标准护理。虽然有效,但椎间盘切除术确实有效。
不修复因突出引起的纤维环(AF)缺陷,这可能导致加速的IVD
变性、再突出和反复疼痛。细胞接种、粘附性水凝胶是一种很有前途的策略
预防这些并发症,因为它们可以立即封闭房颤缺陷并长期输送细胞
治愈。设计这种用于IVD细胞输送的水凝胶是具有挑战性的,因为软生物材料通常使用
对于IVD损伤空间内的细胞递送风险。相反,高模数生物材料旨在
承受高强度的脊柱负荷会阻碍包裹的细胞的愈合能力。这个项目的总体目标是
研究建议是将细胞微胶囊、可降解微球的原理独一无二地结合起来
(MBS)和高模数生物材料,以设计促进IVD再生的下一代生物材料
和功能性修复。目标1将评估氧化海藻酸盐的保护能力和降解动力学
(OxAlg)MBS。目标2将表征染料木素-交联型纤维蛋白(FibGen)-OxAlg结构的作用
房颤细胞表型的大孔隙率和构建生物力学。目标3将评估生物和
FibGen-OxAlg的生物力学修复反应。我们的全球假设是OxAlg MBS将保护
来自FibGen水凝胶的AF细胞然后降解(目标1)。合成的大孔FibGen-OxAlg
构建体可促进房颤细胞增殖和细胞外基质合成,从而增强构建体
生物力学(目标2)。这种细胞传递策略将促进EX的生物和生物力学修复
体内IVD器官培养(目标3)。这项工作意义重大,因为它产生了一种容易翻译的组织
解决与房颤缺陷相关的关键临床挑战的工程策略;此方法可能是
广泛适用于其他愈合有限和机械强度较高的肌肉骨骼组织
需求,这与NIAMS的使命非常一致。这项建议具有很高的创新性,因为
存在修复和再生房颤缺损的策略,很少有发表的研究使用细胞负载的MBS作为成孔剂。
模板化的水凝胶结构,没有人在IVD修复中使用这种结构。验证这一方法的有效性
在加载的大型动物IVD器官培养系统中的生物材料策略是创新和重要的,因为
使用这种培养系统的已发表研究很少,以这种方式进行的测试将加速临床
翻译。完成拟议的目标将为候选人提供严格的多学科培训
生物材料合成、细胞微囊化、生物力学测试和IVD器官培养。辅以
建议的教学和指导经验,这一奖学金将加速一个有前途的博士的职业生涯
强烈致力于肌肉骨骼组织工程研究和教育的候选人。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Teaching Tissue Repair Through an Inquiry-Based Learning Bioadhesives Module.
通过基于探究的学习生物粘合剂模块教授组织修复。
- DOI:10.1007/s43683-022-00087-y
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Panebianco,ChristopherJ;Dutta,Poorna;Frost,JillianR;Huang,Angela;Kim,OliviaS;Iatridis,JamesC;Vernengo,AndreaJ;Weiser,JenniferR
- 通讯作者:Weiser,JenniferR
Development of an At-home Metal Corrosion Laboratory Experiment for STEM Outreach in Biomaterials During the Covid-19 Pandemic.
在 Covid-19 大流行期间,开发用于生物材料 STEM 推广的家庭金属腐蚀实验室实验。
- DOI:10.18260/1-2--36966
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Panebianco,ChristopherJames;Iatridis,JamesC;Weiser,Jennifer
- 通讯作者:Weiser,Jennifer
TEACHING PRINCIPLES OF BIOMATERIALS TO UNDERGRADUATE STUDENTS DURING THE COVID-19 PANDEMIC WITH AT-HOME INQUIRY-BASED LEARNING LABORATORY EXPERIMENTS.
- DOI:10.18260/2-1-370.660-125552
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Panebianco, Christopher J;Iatridis, James C;Weiser, Jennifer R
- 通讯作者:Weiser, Jennifer R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher James Panebianco其他文献
Christopher James Panebianco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 0.86万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 0.86万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 0.86万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 0.86万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 0.86万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 0.86万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 0.86万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 0.86万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 0.86万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 0.86万 - 项目类别:
Research Grant














{{item.name}}会员




