RAPs-mediated post-transcriptional control in Apicomplexan parasites
RAP 介导的顶复门寄生虫转录后控制
基本信息
- 批准号:9788270
- 负责人:
- 金额:$ 56.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-19 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAntimalarialsAntiparasitic AgentsAptamer TechnologyBinding ProteinsBiochemicalBiogenesisBioinformaticsBiologyCRISPR/Cas technologyCell physiologyCessation of lifeCharacteristicsCodeCommunicable DiseasesComputer AnalysisDataDevelopmentDrug TargetingEngineeringEpitopesErythrocytesEukaryotaFamilyFutureGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGenomicsGoalsHealthHigh-Throughput Nucleotide SequencingHumanIn SituKnowledgeLeadLife Cycle StagesMaintenanceMalariaMass Spectrum AnalysisMediatingMessenger RNAMolecularMorbidity - disease rateNuclearNuclear ExportOrganellesOrganismParasitesPathway interactionsPeptide Elongation Factor 2PhasePhenotypePlasmodiumPlasmodium falciparumPlayPost-Transcriptional RegulationProtein Binding DomainProtein BiosynthesisProtein FamilyProteinsProteomicsPublishingRNARNA Recognition MotifRNA SplicingRNA-Binding ProteinsResearchResistanceRibonucleoproteinsRoleTechnologyTherapeuticTherapeutic InterventionTimeTranscriptTranslationsVaccinesValidationVirulencebasecomparativecrosslinking and immunoprecipitation sequencingdesigndrug discoveryexperimental studygenome-widehuman pathogenimprovedinsightmRNA Stabilitymortalitymultidisciplinarynew therapeutic targetnovelnovel therapeutic interventionnovel therapeuticspre-clinicalprogramsprotein expressionsmall molecule inhibitortranscriptometranscriptome sequencingzygote
项目摘要
Project Summary/Abstract
In the malaria parasite, gene regulation is heavily dependent on mechanisms acting at
the post- transcriptional and translational levels. More importantly, Plasmodium possesses many
atypical characteristics in both pathways when compared to its human host. These unusual
features hence extend our therapeutic window against this deadly parasite, yet these
characteristics have been poorly explored at the molecular level. The main goal of this project is
to characterize the role of newly identified apicomplexan-specific RNA- binding proteins {RAPs) in
parasite development and virulence, and to validate their potential as novel drug targets.
The fact that Plasmodium parasites modulate part of his gene expression at the post-transcriptional
level was inspired by many early studies that demonstrated that the global proteomic profiles often
lagged behind the transcriptional profiles. Our newly published large-scale bioinformatics
reinforce this conjecture as we determined that at least 18% of all coding-gene are predicted
to be potential RNA binding domain-containing protein (RBP). Furthermore, many of these parasite
RBPs were experimentally shown to interact in situ with mRNAs. In all eukaryotic organisms,
RBPs are essential to regulate mRNA processing at multiple levels including splicing,
transport, mRNA stability and turnover, as well as mRNA localization and translational
efficiency. In the human malaria parasite, very few RBPs have been characterized. We propose to
address this knowledge gap by examining the function of the parasite specific RNA-binding
domain proteins abundant in Apicomplexans, or RAPs. More specifically, we will use
state-of-the-art genomics, molecular, and cellular approaches to determine the role of the 21
identified RAPs in parasite development and survival. In Aim 1, we will characterize the
essentiality, subcellular localization and phenotypes of RAPs in P. falciparum across
different developmental stage using novel CRISPR/Cas9 approaches. In Aim 2, we will define the
global RAP- related ribonucleoprotein interaction network across various parasite
developmental stages by developing high-throughput sequencing technologies and pull-down
strategies followed by mass spectrometry analysis. Our complementary approaches will not only
identify key specific RBPs contributing to parasite development, but also uncover unique
post-transcriptional networks in a eukaryotic human pathogen. By providing
fundamental insights into mechanisms regulating translation in Plasmodium, this project will
improve our ability to design new drugs and novel lines of defense against malaria and many other
infectious disease agents.
项目总结/摘要
在疟疾寄生虫中,基因调控在很大程度上依赖于作用于
转录后和翻译水平。更重要的是,疟原虫拥有许多
与人类宿主相比,这两种途径都具有非典型特征。这些不寻常
因此,这些功能扩展了我们对这种致命寄生虫的治疗窗口,但这些
这些特征在分子水平上探索得很差。该项目的主要目标是
为了表征新鉴定的顶复体特异性RNA结合蛋白(RAP)在
寄生虫的发育和毒力,并验证其作为新型药物靶点的潜力。
疟原虫在转录后水平调节部分基因表达,
水平的灵感来自于许多早期的研究,这些研究表明,全球蛋白质组学概况往往
落后于转录谱。我们新发表的大规模生物信息学
我们确定至少有18%的编码基因是预测的,
是潜在的RNA结合域蛋白(RBP)。此外,许多寄生虫
实验表明RBP与mRNA原位相互作用。在所有真核生物中,
RBP对于在多个水平上调节mRNA加工是必不可少的,包括剪接,
转运,mRNA稳定性和周转,以及mRNA定位和翻译
效率在人类疟疾寄生虫中,很少有限制性商业惯例被描述。我们建议
通过检查寄生虫特异性RNA结合的功能来解决这一知识空白
在顶复门中丰富的结构域蛋白,或RAP。更具体地说,我们将使用
最先进的基因组学,分子和细胞方法,以确定21
确定了寄生虫发育和存活的RAP。在目标1中,我们将描述
恶性疟原虫RAPs的重要性、亚细胞定位和表型
不同的发育阶段使用新的CRISPR/Cas9方法。在目标2中,我们将定义
跨多种寄生虫的RAP相关核糖核蛋白相互作用网络
通过开发高通量测序技术和下拉技术,
策略,然后进行质谱分析。我们的互补方法不仅将
确定有助于寄生虫发展的关键特定RBP,但也发现独特的
真核人类病原体中的转录后网络。通过提供
对疟原虫翻译调节机制的基本见解,该项目将
提高我们设计新药物和新防线的能力,
传染病病原体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karine Gaelle Le Roch其他文献
Karine Gaelle Le Roch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karine Gaelle Le Roch', 18)}}的其他基金
Chromatin structure and control of gene expression in the human malaria parasite
人类疟疾寄生虫的染色质结构和基因表达控制
- 批准号:
9905479 - 财政年份:2018
- 资助金额:
$ 56.06万 - 项目类别:
RAPs-mediated post-transcriptional control in Apicomplexan parasites
RAP 介导的顶复门寄生虫转录后控制
- 批准号:
10466864 - 财政年份:2018
- 资助金额:
$ 56.06万 - 项目类别:
Chromatin structure and control of gene expression in the human malaria parasite
人类疟疾寄生虫的染色质结构和基因表达控制
- 批准号:
10165476 - 财政年份:2018
- 资助金额:
$ 56.06万 - 项目类别:
Chromatin structure and control of gene expression in the human malaria parasite
人类疟疾寄生虫的染色质结构和基因表达控制
- 批准号:
10394336 - 财政年份:2018
- 资助金额:
$ 56.06万 - 项目类别:
The spatial organization of the Plasmodium genome throughout its infectious cycle
疟原虫基因组在整个感染周期中的空间组织
- 批准号:
8675801 - 财政年份:2013
- 资助金额:
$ 56.06万 - 项目类别:
The spatial organization of the Plasmodium genome throughout its infectious cycle
疟原虫基因组在整个感染周期中的空间组织
- 批准号:
9067925 - 财政年份:2013
- 资助金额:
$ 56.06万 - 项目类别:
The spatial organization of the Plasmodium genome throughout its infectious cycle
疟原虫基因组在整个感染周期中的空间组织
- 批准号:
8862371 - 财政年份:2013
- 资助金额:
$ 56.06万 - 项目类别:
The spatial organization of the Plasmodium genome throughout its infectious cycle
疟原虫基因组在整个感染周期中的空间组织
- 批准号:
8557512 - 财政年份:2013
- 资助金额:
$ 56.06万 - 项目类别:
Understanding the Role of Nucleosome Turnover in the Malaria Parasite
了解核小体周转在疟疾寄生虫中的作用
- 批准号:
8515919 - 财政年份:2010
- 资助金额:
$ 56.06万 - 项目类别:
Understanding the Role of Nucleosome Turnover in the Malaria Parasite
了解核小体周转在疟疾寄生虫中的作用
- 批准号:
8142908 - 财政年份:2010
- 资助金额:
$ 56.06万 - 项目类别:
相似海外基金
Developing inhibitors of Plasmodium Acetyl CoA Synthetase as new multistage antimalarials
开发疟原虫乙酰辅酶A合成酶抑制剂作为新型多级抗疟药
- 批准号:
MR/X030202/1 - 财政年份:2023
- 资助金额:
$ 56.06万 - 项目类别:
Research Grant
Novel Dual-Stage Antimalarials: Machine learning prediction, validation and evolution
新型双阶段抗疟药:机器学习预测、验证和进化
- 批准号:
10742205 - 财政年份:2023
- 资助金额:
$ 56.06万 - 项目类别:
Natural Product Inspired Novel Antimalarials with Radical Cure Potential
受天然产物启发的具有根治潜力的新型抗疟药
- 批准号:
10635649 - 财政年份:2023
- 资助金额:
$ 56.06万 - 项目类别:
Novel Synergistic Antimalarials with Resistance Reversal Function
具有耐药逆转功能的新型协同抗疟药
- 批准号:
10534667 - 财政年份:2022
- 资助金额:
$ 56.06万 - 项目类别:
Plasmodium Protein Kinase Focused Antimalarials Discovery
疟原虫蛋白激酶聚焦抗疟药的发现
- 批准号:
10533634 - 财政年份:2022
- 资助金额:
$ 56.06万 - 项目类别:
Development of new lead antimalarials targeting parasite coenzyme A biosynthesis and utilisation.
开发针对寄生虫辅酶 A 生物合成和利用的新型先导抗疟药。
- 批准号:
468862 - 财政年份:2022
- 资助金额:
$ 56.06万 - 项目类别:
Operating Grants
DMPK Optimisation of B-hydroxyethylamine Antimalarials
B-羟乙胺抗疟药的 DMPK 优化
- 批准号:
2749037 - 财政年份:2022
- 资助金额:
$ 56.06万 - 项目类别:
Studentship
Repurposing antimalarials for the treatment of NTM infections
重新利用抗疟药治疗 NTM 感染
- 批准号:
10646331 - 财政年份:2022
- 资助金额:
$ 56.06万 - 项目类别:
Novel Synergistic Antimalarials with Resistance Reversal Function
具有耐药逆转功能的新型协同抗疟药
- 批准号:
10368441 - 财政年份:2022
- 资助金额:
$ 56.06万 - 项目类别:
Repurposing antimalarials for the treatment of NTM infections
重新利用抗疟药治疗 NTM 感染
- 批准号:
10494711 - 财政年份:2022
- 资助金额:
$ 56.06万 - 项目类别:














{{item.name}}会员




