Unraveling constraints on motor cortical activity exploration and shaping during structural skill learning using large-scale 2-photon imaging and holographic optogenetic stimulation
使用大规模 2 光子成像和全息光遗传学刺激,揭示结构技能学习过程中运动皮层活动探索和塑造的限制
基本信息
- 批准号:9788757
- 负责人:
- 金额:$ 6.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-16 至 2021-09-15
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAuditoryBRAIN initiativeBase of the BrainBehaviorBehavioralBrainCalciumChronicCommunicationData AnalysesDimensionsEtiologyFactor AnalysisFeedbackForelimbGoalsHeadImageKnowledgeLearningLearning SkillLinkMapsMemoryMicroscopeMotionMotorMotor CortexMovementMusMuscleNeuronsOutcomeParalysedPatientsPatternPerformancePlayPopulationRoleSeriesShapesSiteSourceSpecific qualifier valueStructureSystemTestingTrainingWorkauditory feedbackbasebrain machine interfacedesignexperiencehigh dimensionalitymotor disordermotor learningmultidimensional dataneural patterningneuroprosthesisnoveloptogeneticsrelating to nervous systemskillstwo-photon
项目摘要
Project Summary
When learning new skills, experience with previously-learned skills can facilitate faster learning by constraining
behavioral exploration and shaping, a concept known as “structural learning”. The motor cortex plays an
essential role in learning new skills, and its initially variable activity is shaped and consolidated over
learning. However, how previous experience modulates exploration and shaping of cortical network activity
to facilitate new skill learning is not well understood. When the brain learns to control a brain-machine interface
(BMI), cortical network activity exploration and shaping is broad (high-dimensional) in BMI-naïve subjects
and constrained (low-dimensional) in BMI-experienced subjects, suggesting the following hypothesis.
Hypothesis: Previous experience facilitates faster learning of new, related skills by constraining how motor
cortical network activity is explored and shaped, effectively reducing the number of neural parameters to learn.
The hypothesis’ prediction is that during faster learning of related skills, neural dimensionality will be decreased
and aligned with previously learned neural patterns. This project tests the prediction by leveraging novel
closed-loop paradigms, chronic large-scale 2-photon calcium imaging, high-dimensional data analysis,
and holographic optogenetic stimulation to study and manipulate the neural basis of structural skill
learning. First, the correspondence between structural learning of muscle patterns and cortical network activity
exploration and shaping will be studied using large-scale 2-photon calcium imaging. Second, to causally link
neural variance to learning neural patterns, a high-performance, calcium imaging-based BMI will be developed,
and the relationship between structural neuroprosthetic learning and neural exploration and shaping will be
analyzed. Finally, the structure of cortical network activity will be artificially shaped using holographic
optogenetic stimulation and tested on neuroprosthetic skill learning. The long-term objective of this proposal
integrates several core goals of the BRAIN initiative. The proposal will produce a dynamic picture of the
learning brain and demonstrate causality using BMIs and holographic optogenetic stimulation. This work’s
outcome will contribute conceptual principles underlying skill learning and memory and guide the design of BMI
systems to restore movement and assist learning.
Aim 1: Investigate the relationship between structural motor learning and cortical network activity exploration
and shaping using a novel motor task and large-scale 2-photon calcium imaging.
Aim 2: Investigate the relationship between structural neuroprosthetic learning and cortical network activity
exploration and shaping using a high-performance, calcium imaging-based BMI.
Aim 3: Artificially shape structure of cortical network activity using closed-loop holographic optogenetic
stimulation and test effect on neuroprosthetic learning.
项目摘要
当学习新技能时,以前学过的技能的经验可以通过限制
行为探索和塑造,一个被称为“结构学习”的概念。运动皮层扮演着
在学习新技能中的重要作用,其最初的可变活动是在
学习然而,先前的经验如何调节皮层网络活动的探索和塑造,
促进新技能的学习还没有得到很好的理解。当大脑学会控制脑机接口时
(BMI),皮质网络活动探索和塑造在BMI初治受试者中是广泛的(高维)
和约束(低维)的BMI经验的受试者,提出了以下假设。
假设:以前的经验通过限制运动的方式,促进了新的相关技能的更快学习。
探索和塑造皮层网络活动,有效地减少了要学习的神经参数的数量。
该假说的预测是,在快速学习相关技能的过程中,神经维度会降低
并与先前学习的神经模式相匹配。该项目通过利用新的
闭环范例,慢性大规模双光子钙成像,高维数据分析,
和全息光遗传学刺激来研究和操纵结构技能的神经基础
学习第一,肌肉模式的结构学习和皮层网络活动之间的对应关系
将使用大规模双光子钙成像来研究探测和成形。第二,因果联系
神经变异学习神经模式,将开发一种高性能的、基于钙成像的BMI,
结构神经假体学习与神经探索和塑造之间的关系将是
分析了最后,皮质网络活动的结构将使用全息技术人工塑造。
光遗传学刺激并在神经假体技能学习上进行测试。本提案的长期目标
整合了BRAIN倡议的几个核心目标。该提案将提供一个动态的图片,
学习大脑和证明因果关系使用BMI和全息光遗传学刺激。这件作品
结果将有助于技能学习和记忆的概念原则,并指导BMI的设计
恢复运动和帮助学习的系统。
目的1:探讨结构运动学习与皮层网络活动探索的关系
以及使用新的运动任务和大规模双光子钙成像进行塑形。
目的2:探讨结构神经修复学习与皮层网络活动的关系
探索和塑造使用高性能,钙成像为基础的BMI。
目的3:利用闭环全息光遗传学方法初步构建大脑皮层网络活动的结构
刺激和测试对神经假体学习影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vivek Athalye其他文献
Vivek Athalye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vivek Athalye', 18)}}的其他基金
Connectivity Principles Underlying Network Dynamics and Learning
网络动态和学习的连接原理
- 批准号:
10651856 - 财政年份:2022
- 资助金额:
$ 6.62万 - 项目类别:
Connectivity principles underlying network dynamics and learning
网络动态和学习的连接原理
- 批准号:
10507579 - 财政年份:2022
- 资助金额:
$ 6.62万 - 项目类别:
相似海外基金
In the middle of the swarm: neuromodulation of the auditory function in malaria mosquitoes
在群体中间:疟疾蚊子听觉功能的神经调节
- 批准号:
MR/Y011732/1 - 财政年份:2024
- 资助金额:
$ 6.62万 - 项目类别:
Fellowship
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 6.62万 - 项目类别:
Standard Grant
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
- 批准号:
24K03872 - 财政年份:2024
- 资助金额:
$ 6.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Impact of Children's Auditory Technology (iCAT)
儿童听觉技术 (iCAT) 的影响
- 批准号:
MR/X035999/1 - 财政年份:2024
- 资助金额:
$ 6.62万 - 项目类别:
Fellowship
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 6.62万 - 项目类别:
Uncovering the Functional Effects of Neurotrophins in the Auditory Brainstem
揭示神经营养素对听觉脑干的功能影响
- 批准号:
10823506 - 财政年份:2024
- 资助金额:
$ 6.62万 - 项目类别:
Auditory Cortex Plasticity Following Deafness
耳聋后的听觉皮层可塑性
- 批准号:
478943 - 财政年份:2023
- 资助金额:
$ 6.62万 - 项目类别:
Operating Grants
Optimization of auditory temporal information processing mechanisms through the development of children with cochlear implants
通过人工耳蜗植入儿童的发育优化听觉时间信息处理机制
- 批准号:
23H01063 - 财政年份:2023
- 资助金额:
$ 6.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Signal Processing Along the Auditory Pathway: Changes Following Noise Exposure
沿着听觉通路的信号处理:噪声暴露后的变化
- 批准号:
10536262 - 财政年份:2023
- 资助金额:
$ 6.62万 - 项目类别:
In vivo investigation of spontaneous activity in the prehearing mammalian auditory system
哺乳动物听力前听觉系统自发活动的体内研究
- 批准号:
2881096 - 财政年份:2023
- 资助金额:
$ 6.62万 - 项目类别:
Studentship














{{item.name}}会员




