Development of a Low-Profile Dual Hormone Patch Pump with Novel Occlusion Sensor

开发带有新型闭塞传感器的薄型双激素贴片泵

基本信息

  • 批准号:
    9788425
  • 负责人:
  • 金额:
    $ 64.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Development of a Low-Profile Dual Hormone Patch Pump with Novel Occlusion Sensor Project Summary: The Specific Aim of this project is to develop a discrete, low-profile, dual hormone drug delivery system using SFC Fluidics’ enabling microfluidic technologies. A DualPump™ will be developed in which one proprietary ePump® body will independently and accurately deliver both insulin and glucagon from two separate reservoirs. Latching safety valve sets will independently and safely control the delivery of each hormone and a dispense confirmation sensor will notify the user of any dosing errors resulting from occlusions or electrical/mechanical failures. Phase II will see the integration of all components into an accurate, discrete, low-profile wearable pod, extensive benchtop testing and initial testing in swine. The end goal of Phase II is production of a DualPump module that has been introduced to the FDA and is ready to be integrated with all other components required for a dual hormone artificial pancreas. During Phase IIB, SFC Fluidics will work with manufacturers of continuous glucose monitors, control algorithms and stable drug formulations to develop an FDA-approved, robust, and reliable dual hormone artificial pancreas.
薄型双激素贴片泵的研制 新型阻塞传感器 项目概要: 该项目的具体目标是开发一种离散的,低调的,双激素药物 使用SFC Fluidics的微流控技术的输送系统。DualPump™将 一个专有的ePump®机构将独立和准确地提供 胰岛素和胰高血糖素。闭锁式安全阀组将独立 并安全地控制每种激素的输送, 用户因堵塞或电气/机械故障而导致的任何剂量错误。相 II将看到所有组件集成到一个准确的,离散的,低姿态的可穿戴吊舱, 广泛的实验室试验和猪的初步试验。第二阶段的最终目标是生产 DualPump模块已被引入FDA,并准备与所有 双激素人工胰腺所需的其他成分。在IIB期,SFC Fluidics将与连续葡萄糖监测仪、控制算法和 稳定的药物配方,以开发FDA批准的,强大的,可靠的双重激素 人工胰腺

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Forrest Payne其他文献

Forrest Payne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Forrest Payne', 18)}}的其他基金

Advanced Development of Gemini-DHAP
Gemini-DHAP的高级开发
  • 批准号:
    10760050
  • 财政年份:
    2023
  • 资助金额:
    $ 64.86万
  • 项目类别:
Development of an Implantable On-Demand Drug Delivery Device for Behavioral Studies in Small Animals
开发用于小动物行为研究的植入式按需给药装置
  • 批准号:
    9407379
  • 财政年份:
    2016
  • 资助金额:
    $ 64.86万
  • 项目类别:
Development of an Implantable On-Demand Drug Delivery Device for Behavioral Studies in Small Animals
开发用于小动物行为研究的植入式按需给药装置
  • 批准号:
    9047055
  • 财政年份:
    2015
  • 资助金额:
    $ 64.86万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 64.86万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了