Statistical Methods for Inferring Gene-Phenotype Associations Using Omic Data from Gene Knockout and Human Phenotype Studies
使用基因敲除和人类表型研究的组学数据推断基因表型关联的统计方法
基本信息
- 批准号:10733165
- 负责人:
- 金额:$ 55.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-22 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAllelesArea Under CurveBiologicalCatalogsCell modelCellsChromatinClassificationCollaborationsCommunicationCommunitiesCommunity OutreachComplexComputer softwareComputing MethodologiesDataData AnalysesDiseaseDrug TargetingEducational workshopEpigenetic ProcessFeedbackFutureGene CombinationsGene ExpressionGenesGoalsGraphHarvestHumanHuman BiologyHuman DevelopmentIn VitroIndividualInterventionKnock-outLearningMedicineMethodsModelingMolecularMultiomic DataNamesNoiseOutcomeOutputPhasePhenotypeProductionResearch DesignResearch Project GrantsResourcesSignal TransductionSignaling MoleculeSignaling ProteinStatistical MethodsStructureSystemTissuesValidationVariantWorkcausal variantcell typecomputer frameworkdata resourcedeep learningdesigneffectiveness measureexperienceflexibilitygene functiongene interactiongene networkgene regulatory networkgenome-wideimprovedin vivoinsightknockout genelearning strategymembermolecular phenotypemultiple omicsnovel strategiesopen sourceprotein protein interactionresearch studywebinar
项目摘要
Project Summary
The phase 1 of the Molecular Phenotypes of Null Alleles in Cells (MorPhiC) consortium will produce a catalog of
molecular and cellular phenotypes for null alleles of ~1000 human genes using in vitro cellular systems. These
rich resources will allow us to study the gene functions in several multicellular systems that often model early
human development. The impact of a gene knockout on complex human phenotypes can be highly dependent
on the corresponding cell type, cell stage, and tissue microenvironment. Therefore, to generalize the insights
from MorPhiC studies to in vivo settings, we need to harmonize MorPhiC resources and the molecular/cellular
phenotypes of appropriate cell types or tissues, by a flexible and robust computational framework. We aim to
achieve this goal by two complementary approaches. First, we will develop a dynamic gene regulatory network
named moDAG: multi-omic Directed Acyclic Graph. MoDAG combines multi-omic data from MorPhiC and other
studies and the state-of-the-art statistical methods to estimate a gene-regulatory network. MoDAG models cell
types characterized by genome-wide epigenetic or gene expression data. It also accounts for signals from tissue
microenvironment by modeling a set of signaling proteins. MoDAG can be used to predict the effect of gene
knock out in the in vitro cellular systems, and thus help prioritize the genes to be targeted in future MorPhiC
studies. Second, we propose a biologically informed deep learning method named as SDAN: Supervised Deep
learning with gene Annotation. SDAN combines molecular phenotype of gene knockout with gene annotation to
identify gene sets associated with gene knock out. Gene sets provide more robust characterization of gene
knockout than individual genes and thus are more generalizable to different cell types or tissues. The gene
annotation used by SDAN is gene-gene interaction network that can be modified according to relevant cell types
or tissues. Finally, we apply these two methods to predict the phenotypic outcomes of gene knockouts and
assess the association between gene knockouts and human phenotypes. Our computational framework bridges
MorPhiC’s resource with accumulating omic data in various human cell types and tissues and provide effective
solutions to generate new insights or hypothesis for future studies.
项目摘要
第一阶段的分子表型的等位基因在细胞(MorPhiC)财团将产生一个目录,
使用体外细胞系统对约1000个人类基因的无效等位基因进行分子和细胞表型分析。这些
丰富的资源将使我们能够研究几个多细胞系统中的基因功能,这些系统通常是早期模型
人类发展基因敲除对复杂人类表型的影响可能高度依赖于
对相应的细胞类型、细胞阶段和组织微环境的影响。因此,为了概括这些见解,
从MorPhiC研究到体内环境,我们需要协调MorPhiC资源和分子/细胞
表型的适当的细胞类型或组织,通过灵活和强大的计算框架。我们的目标是
通过两种互补的方法实现这一目标。首先,我们将建立一个动态的基因调控网络
moDAG:multi-omic Directed Acyclic Graph。MoDAG结合了来自MorPhiC和其他
研究和最先进的统计方法来估计基因调控网络。MoDAG模型细胞
以全基因组表观遗传或基因表达数据为特征的类型。它也解释了来自组织的信号
通过模拟一组信号蛋白来模拟微环境。MoDAG可用于预测基因的作用
在体外细胞系统中敲除,从而有助于优先考虑未来MorPhiC中靶向的基因
问题研究其次,我们提出了一种生物信息深度学习方法SDAN:Supervised Deep
使用基因注释学习。SDAN将基因敲除的分子表型与基因注释相结合,
鉴定与基因敲除相关基因组。基因集提供了更强大的基因表征
基因敲除比单个基因敲除更有效,因此更适用于不同的细胞类型或组织。基因
SDAN使用的注释是基因-基因相互作用网络,可以根据相关细胞类型进行修改
或纸巾。最后,我们应用这两种方法来预测基因敲除的表型结果,
评估基因敲除与人类表型之间的关联。我们的计算框架
MorPhiC的资源,积累了各种人类细胞类型和组织的组学数据,并提供有效的
解决方案,为未来的研究产生新的见解或假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Hsu其他文献
Li Hsu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Hsu', 18)}}的其他基金
Integrative Genomics into Genetic Association Studies of Blood Pressure and Stroke in African Americans
将基因组学整合到非裔美国人血压和中风的遗传关联研究中
- 批准号:
10372063 - 财政年份:2022
- 资助金额:
$ 55.57万 - 项目类别:
Integrative Genomics into Genetic Association Studies of Blood Pressure and Stroke in African Americans
将基因组学整合到非裔美国人血压和中风的遗传关联研究中
- 批准号:
10656163 - 财政年份:2022
- 资助金额:
$ 55.57万 - 项目类别:
Statistical Methods for Analysis of Tumor Heterogeneity in Genetic Epidemiology
遗传流行病学中肿瘤异质性分析的统计方法
- 批准号:
9817026 - 财政年份:2015
- 资助金额:
$ 55.57万 - 项目类别:
Statistical Methods for Analysis of Tumor Heterogeneity in Genetic Epidemiology
遗传流行病学中肿瘤异质性分析的统计方法
- 批准号:
10432024 - 财政年份:2015
- 资助金额:
$ 55.57万 - 项目类别:
Methods for Integrating Functional Data into Complex Disease Genetic Analyses
将功能数据整合到复杂疾病遗传分析中的方法
- 批准号:
9087202 - 财政年份:2015
- 资助金额:
$ 55.57万 - 项目类别:
Methods for Integrating Functional Data into Complex Disease Genetic Analyses
将功能数据整合到复杂疾病遗传分析中的方法
- 批准号:
9308935 - 财政年份:2015
- 资助金额:
$ 55.57万 - 项目类别:
Statistical Methods for Analysis of Tumor Heterogeneity in Genetic Epidemiology
遗传流行病学中肿瘤异质性分析的统计方法
- 批准号:
10602853 - 财政年份:2015
- 资助金额:
$ 55.57万 - 项目类别:
Statistical Methods for Genetic Epidemiology Studies
遗传流行病学研究的统计方法
- 批准号:
9027514 - 财政年份:2015
- 资助金额:
$ 55.57万 - 项目类别:
Statistical Methods for Analysis of Tumor Heterogeneity in Genetic Epidemiology
遗传流行病学中肿瘤异质性分析的统计方法
- 批准号:
10186707 - 财政年份:2015
- 资助金额:
$ 55.57万 - 项目类别:
Statistical Methods for Analysis of Tumor Heterogeneity in Genetic Epidemiology
遗传流行病学中肿瘤异质性分析的统计方法
- 批准号:
10656385 - 财政年份:2015
- 资助金额:
$ 55.57万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 55.57万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 55.57万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 55.57万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 55.57万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 55.57万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 55.57万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 55.57万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 55.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 55.57万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 55.57万 - 项目类别: