Early Alzheimers Forecasting from Multimodal Data via Deep Transfer Learning, Evaluated on a Large-Scale Prospective Cohort Study
通过深度迁移学习从多模式数据预测早期阿尔茨海默病,并在大规模前瞻性队列研究中进行评估
基本信息
- 批准号:10732306
- 负责人:
- 金额:$ 28.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlzheimer disease detectionAlzheimer disease screeningAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaApolipoprotein EBiological MarkersBiologyBrainBrain DiseasesBrain imagingClassificationClinicalClinical TrialsCognitiveCohort StudiesControlled StudyDataData CollectionData SetDiagnosisEarly DiagnosisEffectivenessEngineeringEvolutionExhibitsGeneral PopulationGenesHealthHealth StatusHigh PrevalenceHippocampusHospitalsHybridsImageIncidenceKnowledgeLearningMRI ScansMagnetic Resonance ImagingMapsMeasurementMeasuresMethodologyMethodsModalityModelingMonitorOutcomePalliative CareParietal LobePatient-Focused OutcomesPatientsPerformancePersonsPopulationPopulations at RiskPositron-Emission TomographyPrevention strategyPreventive treatmentProspective, cohort studyProxyQuestionnairesResearchRiskSignal TransductionStructureSubjects SelectionsSurvival AnalysisSymptomsTechniquesTestingTimeTrainingUnited StatesVisitVisual attentionWorkbiobankbrain magnetic resonance imagingcognitive testingcohortdeep learningdemographicsdiagnosis standardearly screeningentorhinal cortexexperimental studyfallsfeature extractiongenetic informationhuman old age (65+)improvedinnovationlearning strategymild cognitive impairmentmultimodal datamultimodalityneuralneuroimagingpredictive modelingprospectivescreeningtooltransfer learning
项目摘要
Project Summary
Alzheimer's Disease, a debilitating and degenerative brain disease that has no cure, affects ~5.8 million
people in the United States. This project will develop techniques to train, adapt and transfer models for
the early detection of Alzheimer’s disease from multimodal data, including genetic information, brain
MRIs and cognitive tests, with a focus on screening for AD in the general population (i.e., evaluated on a
cross-sectional, prospective cohort study, representative of the populations).
We will introduce new techniques, based on deep transfer learning, to extract representations from brain
MRIs, applicable to prospectively collected data which is unaccompanied by expert annotations. We will
incorporate the feature extraction in an end-to-end predictive framework using multimodal deep learning.
Such methods will be useful for modeling, monitoring, and forecasting the progression of Alzheimer's
disease, where MRIs accompany the clinical information collected at different levels of granularity. We
will start with a model that predicts the evolution of AD, trained on multimodal longitudinal data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Models trained on ADNI data typically rely
on specialized engineered features from the brain MRIs requiring a considerable amount of domain
knowledge and pre-processing and which would not be generally available if a patient were to obtain an
MRI scan in the hospital. Thus, we train CNN-based models that work directly with brain MRIs,
optimized to capture the predictive capabilities of the engineered features present in ADNI. We integrate
the brain MRI network with a forecasting model that uses deep learning to extract abstract representations
of the subjects' health status based on their multimodal information at a given point, including
demographics, genetic information (e.g., the ApoE genes), cognitive test scores and brain MRIs. The
method learns health status transitions, as well as how to map the health status abstraction to a diagnosis.
An important innovation is the incorporation of an image extraction component in an end-to-end manner
in the framework using hybrid convolutional layers, visual attention guided by domain knowledge and
information theoretical measurements to extract different features from images.
Moreover, we introduce methodology for the seamless transfer of the models between datasets collected
as part of different studies, where the recorded information, including clinical tests, images collected and
subject questionnaires, differs across study cohorts. The methods mitigate the challenges presented by this
otherwise rich and varied data by using fused signals and mappings between abstractions.
At the end of this study, we will have created a general forecasting framework, capable of predicting the
onset of Alzheimer’s years before symptoms arise, a striking advance that will enable clinicians to
identify new prevention strategies and prepare for, rather that respond to, Alzheimer’s.
项目摘要
阿尔茨海默病是一种无法治愈的衰弱和退化性脑部疾病,影响约580万人
在美国的人。该项目将开发培训、调整和转移模型的技术,
从多模态数据中早期检测阿尔茨海默病,包括遗传信息,大脑
MRI和认知测试,重点是在一般人群中筛查AD(即,一次评估
横断面、前瞻性队列研究,代表人群)。
我们将介绍基于深度迁移学习的新技术,从大脑中提取表征
MRI,适用于前瞻性收集的数据,不附带专家注释。我们将
使用多模态深度学习将特征提取合并到端到端预测框架中。
这些方法将有助于建模,监测和预测阿尔茨海默氏症的进展
疾病,其中MRI伴随着以不同粒度级别收集的临床信息。我们
将从一个预测AD演变的模型开始,该模型是在来自
阿尔茨海默病神经影像学倡议(ADNI)研究。在ADNI数据上训练的模型通常依赖于
大脑核磁共振成像的专业工程特征需要相当大的领域,
知识和预处理,并且如果患者要获得
在医院做核磁共振扫描。因此,我们训练基于CNN的模型,这些模型直接与大脑MRI一起工作,
优化以捕获ADNI中存在的工程特性的预测能力。我们整合
大脑MRI网络,具有使用深度学习提取抽象表示的预测模型
根据受试者在给定时间点的多模态信息,评估受试者的健康状况,包括
人口统计学,遗传信息(例如,ApoE基因)、认知测试分数和脑MRI。的
方法学习健康状态转换,以及如何将健康状态抽象映射到诊断。
一个重要的创新是以端到端的方式纳入图像提取组件
在使用混合卷积层的框架中,由领域知识引导的视觉注意力,
信息理论测量,以从图像中提取不同的特征。
此外,我们还介绍了在收集的数据集之间无缝传输模型的方法
作为不同研究的一部分,其中记录的信息,包括临床测试,收集的图像和
受试者问卷,在研究队列中不同。这些方法减轻了由此带来的挑战。
通过使用融合的信号和抽象之间的映射,可以获得丰富多样的数据。
在这项研究的最后,我们将创建一个通用的预测框架,能够预测
在症状出现前几年就开始出现阿尔茨海默氏症,这一惊人的进步将使临床医生能够
确定新的预防策略,为阿尔茨海默氏症做好准备,而不是对它做出反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joyita Dutta其他文献
Joyita Dutta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joyita Dutta', 18)}}的其他基金
Super-Resolution Tau PET Imaging for Alzheimer's Disease
用于阿尔茨海默病的超分辨率 Tau PET 成像
- 批准号:
10724836 - 财政年份:2022
- 资助金额:
$ 28.71万 - 项目类别:
Longitudinal predictive modeling for tau in Alzheimer's disease
阿尔茨海默病中 tau 蛋白的纵向预测模型
- 批准号:
10308208 - 财政年份:2021
- 资助金额:
$ 28.71万 - 项目类别:
Longitudinal predictive modeling for tau in Alzheimer's disease
阿尔茨海默病中 tau 蛋白的纵向预测模型
- 批准号:
10471298 - 财政年份:2021
- 资助金额:
$ 28.71万 - 项目类别:
Longitudinal predictive modeling for tau in Alzheimer's disease
阿尔茨海默病中 tau 蛋白的纵向预测模型
- 批准号:
10632023 - 财政年份:2021
- 资助金额:
$ 28.71万 - 项目类别:
Sleep metrics from machine learning for Alzheimer's disease diagnostics
用于阿尔茨海默病诊断的机器学习睡眠指标
- 批准号:
10221599 - 财政年份:2020
- 资助金额:
$ 28.71万 - 项目类别:
Sleep metrics from machine learning for Alzheimer's disease diagnostics
用于阿尔茨海默病诊断的机器学习睡眠指标
- 批准号:
10042952 - 财政年份:2020
- 资助金额:
$ 28.71万 - 项目类别:
Sleep metrics from machine learning for Alzheimer's disease diagnostics
用于阿尔茨海默病诊断的机器学习睡眠指标
- 批准号:
10715006 - 财政年份:2020
- 资助金额:
$ 28.71万 - 项目类别:
Tau Quantitation in AD with High Resolution MRI and PET
使用高分辨率 MRI 和 PET 对 AD 中的 Tau 蛋白进行定量
- 批准号:
8949099 - 财政年份:2015
- 资助金额:
$ 28.71万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 28.71万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 28.71万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 28.71万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 28.71万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 28.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 28.71万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 28.71万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 28.71万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 28.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 28.71万 - 项目类别:
Studentship