Massively Parallel Optoacoustic Retinal Stimulation at Micrometer-Resolution
微米分辨率的大规模并行光声视网膜刺激
基本信息
- 批准号:10731795
- 负责人:
- 金额:$ 26.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:BlindnessBrainCellsChemicalsCicatrixClinical TrialsComplexCoupledDataDevelopmentDevice DesignsDevicesElectrodesElectronsElectrophysiology (science)ElementsEsthesiaEyeFiberFilmFocused UltrasoundFoundationsGeneral HospitalsGeneticHumanImageImplantIndividualInterventionLabelLasersLegalLightingMagnetismMeasurementMedicalMethodsMusNatural regenerationNeuronsPatternPenetrationPerformancePhysiologic pulseProsthesisResolutionRetinaRetinal DegenerationRetinal Ganglion CellsSchemeSourceTechnologyTestingTissuesUnited StatesVisionbiomaterial compatibilityclinical translationcraniumdensitydesigndigitalelectric impedanceflexibilityimplant designimplantable deviceimprovedin vivolensmedical schoolsmetermulti-electrode arraysmultidisciplinarynanomaterialsneuralneural circuitneuroregulationnew technologynon-geneticnoninvasive brain stimulationpatch clampresponseretina implantationretinal prosthesisretinal stimulationscale upsight restorationtechnology platformtissue culturetranslational potentialultrasound
项目摘要
Project Summary
Retinal degenerative diseases are the leading cause of irreversible vision loss. There is no approved medical
intervention that could cure or reverse the courses of retinal degenerative diseases. Retina prosthesis are
implantable devices designed to stimulate sensation of vision in the eyes of individuals with these significant
conditions. Yet, due to the current spreading, resolution and pixel density are limited in the existing electrical
based devices. New technologies and methods are still being sought for precise and non-genetic implantable
retinal stimulation with an improved pixel density. In this application, we aim to develop an optoacoustic micro-
lens array (OAA). This array can generate a desired pattern of focus ultrasound for massively parallel retinal
stimulation with a focus size of 40-50 microns and pixel density up to 178 pixels per mm2. Such ultra-high spatial
precision, variable penetration and massive parallel capabilities enabled our focused optoacoustic technology
while incorporated in the soft implant design will offer clear advantages over existing methods. A multi-
disciplinary team with complementary expertise is assembled to perform the proposed activities. Prof. Chen
Yang (PI) is an expert in nanomaterials and development of new neural interface for modulation and
regeneration. Prof. Fried (Co-I, Mass General Hospital/Harvard Medical School) has considerable expertise
studying the responses of retinal and other CNS neurons to electric, magnetic, and other forms of artificial
stimulation. Prof. Ji-Xin Cheng (collaborator) is an expert in label-free chemical imaging and photoacoustic
devices. Our team has pioneered ultra-high precision optoacoustic neuromodulation. We have successfully
shown the retina can directly be stimulated by optoacoustic. These feasibility data led to our central hypothesis
that via the design of the optoacoustic lens arrays, optoacoustic is able to deliver massively parallel retinal
stimulation at an unprecedented 50 micro-meter spatial precision, serving a foundation for retinal prothesis. To
test this central hypothesis, the following specific aims are proposed. In Aim 1, we will demonstrate direct retinal
stimulation of four subtypes alpha RGC at micrometer-resolution by TFOE validated by patch clamp. In Aim 2,
we will demonstrate massively parallel retinal stimulation at micrometer resolution by OAA using multi-electron
array measurements. These efforts are expected to generate an implant design offering massively parallel and
high precision optoacoustic stimulation as genetics-free retinal prosthesis with translational potential to human.
项目摘要
视网膜退行性疾病是不可逆视力丧失的主要原因。没有批准的医疗
这种干预可以治愈或逆转视网膜退行性疾病的进程。视网膜假体
设计用于刺激具有这些显著的视觉障碍的个体的眼睛中的视觉感觉的可植入装置。
条件然而,由于电流扩散,分辨率和像素密度在现有的电致发光器件中受到限制。
基于设备。新的技术和方法仍在寻求精确和非遗传植入
视网膜刺激,像素密度提高。在这个应用中,我们的目标是开发一个光声微-
透镜阵列(OAA)。该阵列可以生成用于大规模并行视网膜成像的聚焦超声的期望图案。
刺激具有40-50微米的焦点尺寸和高达178像素/mm 2的像素密度。如此超高的空间感
精确度、可变渗透和大规模并行功能使我们能够采用专注的光声技术
而结合在软植入物设计中将提供优于现有方法的明显优点。一个多-
为执行拟议的活动,组建了具有互补专长的纪律小组。陈教授
Yang(PI)是纳米材料和开发新的神经接口的专家,
再生Fried教授(麻省总医院/哈佛医学院Co-I)具有相当的专业知识
研究视网膜和其他中枢神经系统神经元对电,磁和其他形式的人工刺激的反应。
刺激.程继新教授(合作者)是无标记化学成像和光声的专家
装置.我们的团队开创了超高精度的光声神经调制。我们已经成功
显示视网膜可以直接被光声刺激。这些可行性数据引出了我们的中心假设
通过光声透镜阵列的设计,光声能够提供大规模并行视网膜成像,
以前所未有的50微米空间精度进行刺激,为视网膜假体奠定基础。到
为了检验这一中心假设,提出了以下具体目标。在目标1中,我们将展示直接视网膜
通过膜片钳验证的TFOE以微米分辨率刺激四种亚型α RGC。在目标2中,
我们将使用多电子显微镜,通过OAA演示微米分辨率的大规模并行视网膜刺激。
阵列测量这些努力有望产生一种植入物设计,
高精度光声刺激作为无基因视网膜假体,具有向人类平移潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen Yang其他文献
Chen Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Resolving the Role of Brain Lymphatic Endothelial Cells in Sleep Dependent Brain Clearance
解决脑淋巴内皮细胞在睡眠依赖性脑清除中的作用
- 批准号:
BB/Y001206/1 - 财政年份:2024
- 资助金额:
$ 26.52万 - 项目类别:
Research Grant
Diversity of neural stem cells lineages and temporal scaling in mammalian complex brain formation
哺乳动物复杂大脑形成中神经干细胞谱系的多样性和时间尺度
- 批准号:
23H00383 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Therapeutic strategies for sepsis-associated mental disorders focusing on T cells and neurogenesis in the brain.
脓毒症相关精神障碍的治疗策略重点关注大脑中的 T 细胞和神经发生。
- 批准号:
23K08459 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The role of vascular immune cells in recovery after brain haemorrhage
血管免疫细胞在脑出血后恢复中的作用
- 批准号:
2897409 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
Studentship
Immune cells at the blood-brain interface driving concussion-related symptoms
血脑界面的免疫细胞导致脑震荡相关症状
- 批准号:
2897591 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
Studentship
Phase I study of B7-H3 targeting CAR-T cells administered by local delivery in paediatric high risk brain tumour patients.
B7-H3 靶向 CAR-T 细胞的 I 期研究通过局部递送在儿科高危脑肿瘤患者中进行。
- 批准号:
MR/X030199/1 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
Research Grant
Illuminating neurodegenerative tauopathy from somatic genomic landscapes of single human brain cells
从单个人脑细胞的体细胞基因组景观中阐明神经退行性 tau 病
- 批准号:
10686570 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
Targeting myeloid cells to increase efficacy of immunotherapy against brain tumors.
靶向骨髓细胞以提高针对脑肿瘤的免疫疗法的功效。
- 批准号:
10571040 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
The role of oligodendrocyte precursor cells in circuit remodeling in the mature brain
少突胶质细胞前体细胞在成熟脑回路重塑中的作用
- 批准号:
10750508 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
Brain-targeted delivery of therapeutic molecules by exosomes derived from engineered human iPS cells: a potential therapeutic approach for Huntington's disease
通过源自工程化人类 iPS 细胞的外泌体向大脑靶向递送治疗分子:亨廷顿病的潜在治疗方法
- 批准号:
10588392 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别: