Chemigenetic voltage indicators for far-red and two-photon imaging in vivo
用于体内远红和双光子成像的化学遗传学电压指示器
基本信息
- 批准号:10731843
- 负责人:
- 金额:$ 216.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAmino AcidsAnimal ModelAnimalsBehaviorBiological AvailabilityBrainCellsColorCouplesDependenceDevelopmentDiseaseDyesElectron TransportElectronicsElectronsElectrophysiology (science)EventFamilyFluorescenceFluorescence Resonance Energy TransferFluorescent DyesGeneticGenetic EngineeringHealthImageIndividualInvestigationLanguageLightMapsMeasurementMembraneMembrane PotentialsMolecularMolecular ConformationMotionMusNervous SystemNeuronsNeurosciencesOpticsPenetrationPhotonsPhototoxicityProcessPropertyProtein EngineeringProteinsReporterReportingResearchResolutionSensorySignal TransductionSliceSpecificitySpeedStructureSystemTechniquesTertiary Protein StructureTestingTimeTryptophanValidationVariantWorkcell typedesignexperimental studyfluorophorehybrid proteinimprovedin vivoin vivo evaluationin vivo fluorescence imagingin vivo two-photon imagingmillisecondmodel organismneural circuitnoveloptogeneticspatch clamppostsynapticpreventprototyperesponsescaffoldsensorsmall moleculespatiotemporaltooltransmission processtwo-photonvoltage
项目摘要
PROJECT SUMMARY
DESCRIPTION (provided by applicant): Changes in membrane potential are the fundamental language of the nervous system, but these voltage signals are not directly visible. Existing membrane voltage sensors impose severe constraints on the depth, duration, and field of view of in vivo voltage imaging. The development of brighter, redder, and two-photon (2P) compatible voltage indicators would dramatically increase the number of brain structures accessible to voltage imaging and would also enable qualitatively new types of measurements which could be transformative for neuroscience. This proposal will develop a family of hybrid protein-small molecule (chemogenetic) voltage sensors based on a new sensing mechanism, photoinduced electron transfer (PET). Genetically encoded PET voltage sensors will accept diverse bioavailable HaloTag dyes to report membrane voltage via one-photon (1P) or 2P imaging. This approach combines the exquisite molecular specificity of genetically encoded proteins with the superior photophysical properties of synthetic fluorophores. Proof-of-principle experiments demonstrated chemogenetic voltage sensor proteins (termed HaloVSDs) loaded with a far-red bioavailable dye. These HaloVSDs reported subthreshold voltages and spikes in cultured neurons with excellent sensitivity and speed. In Aim 1, the team will evolve this scaffold to create improved far-red PET-based chemogenetic voltage sensors. The sensors will undergo detailed photophysical characterization and will be validated in mice in vivo. In Aim 2, the team will generate a palette of 2P-compatible voltage sensors (HaloVSD-2P) for accessible 2P imaging using 1000–1300 nm excitation wavelengths. HaloVSD-2P will be a modular platform that can be used with multiple bright, photostable, and bioavailable dyes. In Aim 3, the team will combine the HaloVSDs with channelrhodopsins for a bidirectional optical neuro-electronic interface, i.e., all-optical electrophysiology. These tools will be used to construct functional connectivity maps in vivo. Due to their high brightness, HaloVSDs require ~100-fold less excitation light compared to existing far-red Achaerhodopsin- derived voltage sensors. This will minimize fluorescence background, phototoxicity, and bleaching, and will prevent spurious red-light activation of channelrhodopsins. These tools will enable robust crosstalk-free all- optical electrophysiology experiments in live animals. HaloVSDs will provide neuroscientists with unprecedented means of investigating animal models with all-optical interrogation of circuit dynamics. Because they are genetically encoded, these sensors can be easily introduced to various model organisms and will be of broad use in studies of brain circuit function in health and disease.
项目摘要
描述(由申请人提供): 膜电位的变化是神经系统的基本语言,但这些电压信号并不直接可见。现有的膜电压传感器对体内电压成像的深度、持续时间和视场施加了严格的约束。开发更亮、更红和双光子(2 P)兼容的电压指示器将大大增加可用于电压成像的大脑结构的数量,并且还将实现定性的新型测量,这可能会对神经科学产生变革。该提案将开发一个家庭的混合蛋白质小分子(化学)电压传感器的基础上一个新的传感机制,光诱导电子转移(PET)。基因编码的PET电压传感器将接受各种生物可利用的HaloTag染料,通过单光子(1 P)或2 P成像报告膜电压。这种方法结合了基因编码蛋白质的精细分子特异性和合成荧光团的上级物理特性。原理证明实验证明了负载有远红生物可利用染料的化学发生电压传感器蛋白(称为HaloVSD)。这些HaloVSD以优异的灵敏度和速度报告了培养的神经元中的阈下电压和尖峰。在目标1中,该团队将进化这种支架,以创建改进的基于远红PET的化学发生电压传感器。传感器将进行详细的生物物理表征,并将在小鼠体内进行验证。在Aim 2中,该团队将使用1000-1300 nm的激发波长生成2 P兼容电压传感器(HaloVSD-2 P)的调色板,用于可访问的2 P成像。HaloVSD-2 P将是一个模块化平台,可与多种明亮,耐光和生物可利用的染料一起使用。在目标3中,该团队将把HaloVSD与通道视紫红质联合收割机起来,形成双向光学神经电子接口,即,全光学电生理学这些工具将用于构建体内功能连接图。由于它们的高亮度,HaloVSD与现有的远红Achaerhodopsin衍生的电压传感器相比需要少约100倍的激发光。这将使荧光背景、光毒性和漂白最小化,并将防止通道视紫红质的假红光激活。这些工具将能够在活体动物中进行稳健的无串扰全光学电生理学实验。HaloVSD将为神经科学家提供前所未有的手段,通过对电路动力学的全光学询问来研究动物模型。因为它们是基因编码的,这些传感器可以很容易地引入到各种模式生物中,并将在健康和疾病的脑回路功能研究中得到广泛应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Abdelfattah其他文献
Ahmed Abdelfattah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed Abdelfattah', 18)}}的其他基金
Lighting up the brain: Optogenetic tools to record, trace, and manipulate brain circuits at cellular resolution
点亮大脑:以细胞分辨率记录、追踪和操纵大脑回路的光遗传学工具
- 批准号:
10244755 - 财政年份:2021
- 资助金额:
$ 216.49万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 216.49万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 216.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 216.49万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 216.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 216.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 216.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 216.49万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 216.49万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 216.49万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 216.49万 - 项目类别: