Investigating Motor Neuron Disease in Spinocerebellar Ataxia, Type1
研究脊髓小脑共济失调 1 型运动神经元疾病
基本信息
- 批准号:10733124
- 负责人:
- 金额:$ 54.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:Abnormal coordinationAddressAffectAreaAtaxiaBehavioralBehavioral AssayBrain StemBreathingCAG repeatCell Culture TechniquesCell NucleusCellsCerebellar degenerationCessation of lifeDeglutitionDenervationDevelopmentDiseaseDisease ProgressionDissociationElectrophysiology (science)FamilyFunctional disorderGenetic EpistasisGenetic TranscriptionGoalsHealthHistologyImpairmentIndividualInterventionInvestigationInvestmentsJUN geneKnowledgeLeadLifeLoxP-flanked alleleMAPK8 geneMediatingModelingMolecularMorphologyMotor Neuron DiseaseMotor NeuronsMusMuscle WeaknessMuscular AtrophyN-terminalNerve DegenerationNeurodegenerative DisordersNeurogliaNeurologicNeuronal DysfunctionNeuronsNuclearPathogenicityPathologyPathway interactionsPatientsPeptidesPhenotypePhosphotransferasesPlayProcessProteinsRespiration DisordersRespiratory FailureRiskRoleSecondary toShortness of BreathSignal TransductionSkeletal MuscleSortingSpinal CordSpinocerebellar AtaxiasSymptomsTissuesType 1 Spinocerebellar Ataxiaastrogliosisbehavioral phenotypingbrain cellcell typedeep sequencingeffective therapyexperimental studyin vivoinhibitorinnovationinterestmRNA sequencingmotor neuron degenerationmouse modelneuron lossneuronal cell bodynovelnovel therapeuticsoverexpressionpolyglutamineprematurerespiratoryresponseskeletal muscle wastingtranscriptome sequencingtranscriptomics
项目摘要
Spinocerebellar ataxia type 1 (SCA1) is a devastating neurodegenerative disease characterized by progressive
ataxia due to cerebellar degeneration, followed by progressive degeneration and premature death. Substantial
effort has been invested in determining the molecular mechanisms that lead to cerebellar degeneration. This is
largely due to the fact that impairment of these neurons leads to the first symptoms identified in SCA1 patients.
However, loss of cerebellar neurons alone does not account for the muscle weakness and respiratory failure,
which characterize SCA1 progression, and promote premature death. This knowledge gap prompts fundamental
questions about the pathogenic mechanism of premature death. SCA1 is caused by the expansion of CAG
repeats encoding polyglutamines (polyQ) in the ATAXIN1 (ATXN1) protein. The polyQ ATXN1 accumulates in
neurons forming nuclear aggregates ultimately leading to neuronal cell death. Of particular interest to the Orengo
lab is the role motor neurons play in SCA1. These neurons control skeletal muscle activity, and when diseased,
lead to skeletal muscle wasting, weakness, breathing dysfunction, swallowing difficulties and an inability to safely
clear the airway, all of which predispose to respiratory complications leading to premature death. Dr. Orengo
and his team hypothesize that motor neuron dysfunction in SCA1 is the main driver of premature death and that
the mechanisms leading to motor neuron degeneration in SCA1 are different than those involved in cerebellar
neuron degeneration. This distinction may be critical in the development of novel therapeutics that address other
affected cell types than just cerebellar neurons. Using a cadre of SCA1 mouse models, the Orengo lab will be
able to selectively turn on or off the expression of toxic polyQ ATXN1 in motor neurons and assess the molecular
and behavioral changes that follow. Specifically, the goals of this proposal are the following. (1) Assess whether
expression of polyQ ATXN1 in motor neurons is necessary for premature death in a conditional mouse model of
SCA1. (2) Determine the earliest, mid and late transcriptomic changes in motor neurons secondary to
autonomous and non-cell-autonomous polyQ ATXN1 expression. This investigation utilizes an innovative in vivo
approach, with dissociated motor neurons from the spinal cords of mice, sorting their nuclei based on a
fluorescent marker, and then deep sequencing the mRNA molecules present. (3) Explore the role of the master
transcriptional regulator Mdfi in a SCA1 mouse model and ascertain its affect upon the JNK/Jun signaling
cascade. Dr. Orengo’s proposed study is significant because it will shed new light on the role motor neuron
disease plays in SCA1, as well as what pathways are triggered within these neurons that lead to their
degeneration. Understanding these mechanisms will be crucial for developing more effective therapies that
address muscle weakness and premature death in SCA1 patients.
脊髓小脑性共济失调1型(SCA 1)是一种破坏性的神经退行性疾病,其特征在于进行性
由于小脑变性引起的共济失调,随后是进行性变性和过早死亡。实质性
人们一直在努力确定导致小脑变性的分子机制。这是
这主要是由于这些神经元的损伤导致SCA 1患者中识别的第一症状。
然而,小脑神经元的损失本身并不能解释肌肉无力和呼吸衰竭,
其表征SCA 1进展并促进过早死亡。这种知识差距促使人们从根本上
关于过早死亡的致病机制的问题。SCA 1由CAG扩张引起
ATAXIN 1(ATXN 1)蛋白中编码多聚谷氨酰胺(polyQ)的重复序列。polyQ ATXN 1在
神经元形成核聚集体,最终导致神经元细胞死亡。奥伦戈人特别感兴趣
lab是运动神经元在SCA 1中发挥的作用。这些神经元控制骨骼肌的活动,当患病时,
导致骨骼肌消耗、虚弱、呼吸功能障碍、吞咽困难和不能安全地
清理呼吸道,所有这些都容易导致呼吸系统并发症,导致过早死亡。奥伦戈医生
他的团队假设SCA 1中的运动神经元功能障碍是过早死亡的主要驱动因素,
SCA 1运动神经元变性的机制与小脑运动神经元变性的机制不同,
神经元变性这种区别在开发新的治疗方法中可能是至关重要的,
受影响的细胞类型不仅仅是小脑神经元。使用SCA 1小鼠模型的干部,Orengo实验室将
能够选择性地打开或关闭运动神经元中毒性polyQ ATXN 1的表达,并评估其分子机制。
以及随之而来的行为变化具体而言,本提案的目标如下。(1)评估是否
运动神经元中polyQ ATXN 1的表达是条件性小鼠模型中过早死亡所必需的。
SCA1. (2)确定运动神经元中继发的最早、中期和晚期转录组变化
自主和非细胞自主的polyQ ATXN 1表达。这项研究利用了一种创新的体内
方法,从小鼠脊髓中分离运动神经元,根据细胞核的
荧光标记,然后对存在的mRNA分子进行深度测序。(3)探索大师的角色
转录调节因子Mdfi在SCA 1小鼠模型中的表达,并确定其对JNK/Jun信号传导的影响
级联。Orengo博士提出的这项研究意义重大,因为它将为运动神经元的作用提供新的线索。
疾病在SCA 1中的作用,以及在这些神经元中触发了什么途径,导致它们的
退化了解这些机制对于开发更有效的治疗方法至关重要,
解决SCA 1患者的肌无力和过早死亡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James P Orengo其他文献
James P Orengo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James P Orengo', 18)}}的其他基金
Unraveling the mechanisms of motor neuron degeneration if Spinocerebellar Ataxia, type 1
揭示 1 型脊髓小脑共济失调运动神经元变性的机制
- 批准号:
9757831 - 财政年份:2017
- 资助金额:
$ 54.21万 - 项目类别:
Investigating mechanisms of skeletal muscle degeneration in Myotonic Dystrophy
研究强直性肌营养不良骨骼肌变性的机制
- 批准号:
7485273 - 财政年份:2008
- 资助金额:
$ 54.21万 - 项目类别:
Investigating mechanisms of skeletal muscle degeneration in Myotonic Dystrophy
研究强直性肌营养不良骨骼肌变性的机制
- 批准号:
7574524 - 财政年份:2008
- 资助金额:
$ 54.21万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 54.21万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 54.21万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 54.21万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 54.21万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 54.21万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 54.21万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 54.21万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 54.21万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 54.21万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 54.21万 - 项目类别:
Research Grant














{{item.name}}会员




