Chemical Biology of Nitroxyl (HNO) in Bacillus Subtilis
枯草芽孢杆菌中硝酰基 (HNO) 的化学生物学
基本信息
- 批准号:10730746
- 负责人:
- 金额:$ 40.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnabolismAnalytical BiochemistryAnalytical ChemistryAnthrax diseaseAntibioticsBacillus anthracisBacillus subtilisBackBacteriaBiochemicalBiochemistryBiologicalBiologyChemicalsChemistryChromatographyCysteineDevelopmentEnvironmentEnzymesGenerationsGoalsGram-Positive BacteriaGrowthHealthHumanHydrogen SulfideImpairmentIn VitroIncubatedInstitutionInvestigationIronMeasuresMentorsMetabolismMethodsMicrobial PhysiologyModificationMolecularMolecular WeightMycobacterium tuberculosisNatural ProductsNitric OxideNitrogenOrganic ChemistryOrganic SynthesisOutcomeOxidation-ReductionPathogenicityPathway interactionsPhenotypePhysiologicalPhysiologyPrincipal InvestigatorProductionProtein BiosynthesisProteinsPublishingReactionReactive Nitrogen SpeciesReactive Oxygen SpeciesRecordsRecyclingResearchRoleSodium ChlorideSourceStressSulfateSulfhydryl CompoundsSulfurSulfur Metabolism PathwaySystemTrainingTuberculosisUniversitiesVitaminsWorkcofactorcollegedesignexperienceexperimental studyforestin vivoinhibitormethicillin resistant Staphylococcus aureusmicrobialmodel organismnitroxylpersulfidesprogramsresponseundergraduate student
项目摘要
PROJECT SUMMARY
Many pathogenic Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA),
Bacillus anthracis and Mycobacterium tuberculosis, mobilize sulfur through redox conversion of sulfate (SO4-)
to hydrogen sulfide (H2S) that supports cysteine biosynthesis for protein and low molecular weight (LMW) thiol
production. These redox reactions are required for normal metabolic processes. The versatile chemistry of
nitrogen and sulfur allows their participation in many biochemical redox pathways; as intermediary reactive
nitrogen and sulfur species (RNS and RSS), they often act together with reactive oxygen species (ROS).
Various lines of evidence indicate nitroxyl (HNO) sits at the intersection of RNS and RSS crosstalk and this
intersection inspires the proposed work. The interplay of bacterial sulfur mobilization and human health
remains poorly explored but presents an opportunity for understanding chemical redox biology and the
exploitation of new antibiotic strategies. The goal of the proposed research consists of defining HNO’s role in
RSS and RNS crosstalk and its significance in microbial physiology. The proposed mechanistic study
combines several approaches to define the reactivity of the key chemical components—HNO, H2S, and
bacillithiol, (BSH)—in vitro and in Bacillus subtilis, a model organism capable of endogenous nitric oxide (NO)
and H2S generation that produces BSH as its predominant LMW thiol. In conjunction with these chemical
investigations, biochemical studies will delineate HNO’s effect on phenotypic outcomes. This research goal is
based on the hypothesis that “Bacteria lacking BSH demonstrate redox sensitivity to HNO”. This hypothesis
will be probed using synthetic organic and analytical chemistry to define the reactivity of BSH and HNO both in
vitro and in vivo by identifying the products of this reaction including the sulfinamide and the persulfide
modified versions of BSH (Specific Aim 1). Microbiological growth curve experiments will show the effect of
HNO on B. subtilis phenotype and analytical biochemistry will reveal the amount of oxidized thiol content.
Specific Aim 2 builds on Specific Aim 1 to design and synthesize compounds that inhibit BSH biosynthesis as
potential antibiotics activated in the presence of an HNO donor. This aim will be approached by organic
synthesis, analytical and mechanistic biochemistry, and standard microbiological methods. Our team is well
poised to address these questions and Wake Forest University provides an ideal setting for undergraduate
training at the interface of a strong undergraduate college and small graduate program. Achieving a complete
understanding of this fundamental chemistry will inform a wide range of physiological responses modulated by
HNO-thiol reactions and potentially lead to the development of HNO-based antibiotics that target microbial
sulfur metabolism/biochemistry not present in humans.
项目摘要
许多致病性革兰氏阳性细菌包括耐甲氧西林金黄色葡萄球菌(MRSA),
炭疽杆菌和结核分枝杆菌通过硫酸盐(SO 4-)的氧化还原转化来移动硫
到硫化氢(H2S),支持蛋白质和低分子量(LMW)硫醇的半胱氨酸生物合成
生产这些氧化还原反应是正常代谢过程所必需的。多功能的化学物质
氮和硫允许它们参与许多生物化学氧化还原途径;作为中间反应物,
氮和硫物质(RNS和RSS),它们通常与活性氧物质(ROS)一起作用。
各种证据表明硝酰基(HNO)位于RNS和RSS串扰的交叉点,并且这
交叉点激发了拟议的工作。细菌硫动员与人类健康的相互作用
仍然很少探索,但提供了一个机会,了解化学氧化还原生物学和
开发新的抗生素策略。拟议研究的目标包括确定HNO在以下方面的作用:
RSS和RNS串扰及其在微生物生理学中的意义。拟议的机制研究
结合了几种方法来定义关键化学成分的反应性-HNO,H2S,
bacillithiol,(BSH)-在体外和枯草芽孢杆菌中,一种能够内源性一氧化氮(NO)
和H2S生成,其产生BSH作为其主要的LMW硫醇。与这些化学物质一起
通过研究,生化研究将描述HNO对表型结果的影响。本研究的目标是
基于“缺乏BSH的细菌表现出对HNO的氧化还原敏感性”的假设。这一假设
将使用合成有机化学和分析化学进行探测,以确定BSH和HNO的反应性,
通过鉴定该反应的产物,包括亚磺酰胺和过硫化物,
BSH的修改版本(具体目标1)。微生物生长曲线实验将显示
HNO在B。枯草杆菌表型和分析生物化学将揭示氧化硫醇含量的量。
具体目标2建立在具体目标1的基础上,设计和合成抑制BSH生物合成的化合物,
在HNO供体存在下活化的潜在抗生素。这一目标将通过有机
合成、分析和机械生物化学以及标准微生物方法。我们的团队很好
准备解决这些问题,维克森林大学为本科生提供了理想的环境
在强大的本科学院和小型研究生项目的接口上进行培训。实现完全
对这种基本化学的理解将告知广泛的生理反应,
HNO-硫醇反应,并可能导致开发基于HNO的抗生素,
硫代谢/生物化学不存在于人类。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
S BRUCE King其他文献
S BRUCE King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('S BRUCE King', 18)}}的其他基金
Nitroxyl and Nitric Oxide Producing Reactions of Hydroxyurea and Related Compound
羟基脲及相关化合物的硝氧基和一氧化氮生成反应
- 批准号:
7894773 - 财政年份:2009
- 资助金额:
$ 40.7万 - 项目类别:
Nitroxyl and Nitric Oxide Producing Reactions of Hydroxyurea and Related Compound
羟基脲及相关化合物的硝氧基和一氧化氮生成反应
- 批准号:
7654799 - 财政年份:2009
- 资助金额:
$ 40.7万 - 项目类别:
The Nitric Oxide Producing Reactions of Hydroxyurea
羟基脲的一氧化氮生成反应
- 批准号:
7152565 - 财政年份:2000
- 资助金额:
$ 40.7万 - 项目类别:
REACTIONS OF HYDROXYUREA WITH SICKLE CELL HEMOGLOBIN
羟基脲与镰状细胞血红蛋白的反应
- 批准号:
6561306 - 财政年份:2000
- 资助金额:
$ 40.7万 - 项目类别:
The Nitric Oxide Producing Reactions of Hydroxyurea
羟基脲的一氧化氮生成反应
- 批准号:
6725254 - 财政年份:2000
- 资助金额:
$ 40.7万 - 项目类别:
The Nitric Oxide Producing Reactions of Hydroxyurea
羟基脲的一氧化氮生成反应
- 批准号:
6983407 - 财政年份:2000
- 资助金额:
$ 40.7万 - 项目类别:
REACTIONS OF HYDROXYUREA WITH SICKLE CELL HEMOGLOBIN
羟基脲与镰状细胞血红蛋白的反应
- 批准号:
6195672 - 财政年份:2000
- 资助金额:
$ 40.7万 - 项目类别:
REACTIONS OF HYDROXYUREA WITH SICKLE CELL HEMOGLOBIN
羟基脲与镰状细胞血红蛋白的反应
- 批准号:
6527565 - 财政年份:2000
- 资助金额:
$ 40.7万 - 项目类别:
REACTIONS OF HYDROXYUREA WITH SICKLE CELL HEMOGLOBIN
羟基脲与镰状细胞血红蛋白的反应
- 批准号:
6390252 - 财政年份:2000
- 资助金额:
$ 40.7万 - 项目类别:
The Nitric Oxide Producing Reactions of Hydroxyurea
羟基脲的一氧化氮生成反应
- 批准号:
6866064 - 财政年份:2000
- 资助金额:
$ 40.7万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 40.7万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 40.7万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 40.7万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 40.7万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 40.7万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 40.7万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 40.7万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 40.7万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 40.7万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 40.7万 - 项目类别:
Discovery Early Career Researcher Award