Understanding Lrig1+ in vocal fold epithelium and organoid biology
了解声带上皮和类器官生物学中的 Lrig1
基本信息
- 批准号:10732733
- 负责人:
- 金额:$ 55.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectBasal CellBasement membraneBenignBiological AssayBiological MarkersBiologyBromodeoxyuridineCell Differentiation processCellsCellular biologyDataDevelopmental BiologyDiseaseDyesEnsureEosinophilic EsophagitisEpithelial CellsEpitheliumEquilibriumExclusionFunctional disorderGenesGeneticGoalsHealthHistologicHomeostasisHumanHyperplasiaImpairmentIn VitroInflammatoryInflammatory InfiltrateInjuryLabelLamina PropriaLarynxLesionLinkMaintenanceMeasuresMediatingMethodsModelingMolecularMorphogenesisMucous MembraneMusNatural regenerationOrganoidsOutcomePatientsPhysiologicalPolymerase Chain ReactionPopulationProliferatingPropertyQuality of lifeRecoveryResearchRoleSignal TransductionStratified EpitheliumStratified Squamous EpitheliumStratum BasaleStressSystemTissuesUp-RegulationVoiceVoice Disorderscapsulecell typecytokinedaughter celleconomic costepithelial injuryepithelial stem cellhuman modelimprovedin vitro Modelin vivoinflammatory milieuinsightkeratinizationmechanical loadmouse modelnext generation sequencingnotch proteinpersonalized medicinepharmacologicpostnatalprogramspsychologicreconstitutionresponseself-renewalsocialstem cell biologystemnesstissue repairtranscriptomic profilingvocal cord
项目摘要
Project Summary/Abstract:
Voice dysfunction impairs the quality of life of affected patients and treating these disorders is associated with
substantial and far-ranging social, psychological, and economic costs. Vocal fold (VF) inflammatory lesions
cause common voice disorders related to disrupted epithelial homeostasis accompanied by inflammatory
infiltrates and changes in the lamina propria. In studies of the epithelium from elsewhere in the body, cell types
that originate hyperplasic changes are epithelial stem cells. These cells have the capability to self-renew and
give rise to the progeny of differentiated daughter cells which is regulated by the local microenvironment and
cell-autonomously via Notch signaling. Inactivation of Notch1 in the presence of inflammatory cytokines can
lead to epithelial hyperplasia, which can be modeled using in vitro organoids. The overall objective of this
proposal is to provide a comprehensive characterization of VF epithelial stem cells, their requirements for self-
renewal and differentiation under physiological conditions and in response to stress factors, namely injury and
mechanical load, while also creating VF organoids to elucidate molecular mechanisms that underline aberrant
epithelial remodeling as seen in benign inflammatory VF lesions. To achieve our goal we will genetically label
epithelial stem cells targeting the Lrig1 gene that has been linked to stemness properties in majority of epithelia
and our preliminary data show that Lrig1 is also expressed in human and murine VF epithelial cells. In Aim 1,
we will perform transcriptome profiling of murine and human VF Lrig1 cells and measure Lrig1 cell responses
to mechanical load during homeostasis. We will delineate the mechanistic role of murine Lrig1 cells in
homeostasis, and genetically inactivate Notch1 in murine Lrig1 cells to determine its effect on proliferation and
differentiation in vivo. In Aim 2, we will induce VF epithelial injury in a murine model, perform transcriptome
profiling of murine Lrig1 cells and measure their responses to mechanical load during epithelial recovery. We
will determine the functional role of murine Lrig1 cells and Notch1 signaling in re-epithelization. In Aim 3, we
will determine differentiation potential of murine and human VF Lrig1 cells using in vivo subrenal graft assay
and in vitro organoids. We will utilize VF organoids to model Notch-mediated epithelial hyperplasia using
genetic, pharmacologic approaches, and inflammatory cytokines. We will create a reliable culture system that
will improve our understanding of VF epithelial cell biology related to VF inflammatory lesions in the context of
personalized medicine.
项目摘要/摘要:
发声功能障碍损害患者的生活质量,治疗这些障碍与
巨大而广泛的社会、心理和经济代价。声带(VF)炎性病变
引起常见的嗓音障碍,与上皮细胞动态平衡紊乱伴随炎症有关
固有层渗入和改变。在对身体其他部位的上皮细胞的研究中,细胞类型
引起增生性改变的是上皮干细胞。这些细胞具有自我更新和
产生分化子细胞的后代,受局部微环境和
细胞-通过Notch信号自主地进行。在炎性细胞因子存在的情况下,Notch1的失活可能
导致上皮细胞增殖,这可以用体外有机物质来模拟。这样做的总体目标是
建议全面表征VF上皮干细胞,其对自身的要求
在生理条件下的更新和分化,以及对应激因素的响应,即损伤和
机械负荷,同时还创建VF有机化合物来阐明突出异常的分子机制
良性炎症性室性心动过速病变的上皮重塑。为了实现我们的目标,我们将在基因上贴上
靶向Lrig1基因的上皮干细胞与大多数上皮细胞的干细胞特性有关
我们的初步数据显示,Lrig1在人和小鼠的VF上皮细胞中也有表达。在目标1中,
我们将对小鼠和人类VF Lrig1细胞进行转录组谱分析,并测量Lrig1细胞的反应
动态平衡期间的机械负荷。我们将描述小鼠Lrig1细胞在
动态平衡和基因失活Notch1在小鼠Lrig1细胞中以确定其对增殖和
体内分化。在目标2中,我们将在小鼠模型中诱导室颤上皮损伤,进行转录组分析
建立小鼠Lrig1细胞的图谱,并测量其在上皮恢复过程中对机械负荷的反应。我们
将确定小鼠Lrig1细胞和Notch1信号在重新上皮化中的功能作用。在目标3中,我们
将通过体内肾下移植实验确定小鼠和人VF Lrig1细胞的分化潜能
和体外有机化合物。我们将利用VF类有机物建立Notch介导的上皮细胞增生模型
遗传学、药理学方法和炎性细胞因子。我们将建立一个可靠的文化体系,
将提高我们对VF上皮细胞生物学与VF炎性损害相关的理解
个性化医疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vlasta Lungova其他文献
Vlasta Lungova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 55.22万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 55.22万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 55.22万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 55.22万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 55.22万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 55.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 55.22万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 55.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists