The XPA scaffold protein in Nucleotide Excision Repair
核苷酸切除修复中的 XPA 支架蛋白
基本信息
- 批准号:10733350
- 负责人:
- 金额:$ 47.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-09 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAffinityBindingBinding SitesBiological AssayCancer EtiologyCancer cell lineCellsCisplatinClinicDNADNA DamageDNA RepairDataDefectDevelopmentERCC1 geneERCC2 geneEvaluationFoundationsFunctional disorderGenerationsGenomicsGoalsHumanKnowledgeLeadLibrariesLinkLocationMalignant NeoplasmsMissense MutationModelingMolecularMutateMutationNucleotide Excision RepairNucleotide Excision Repair InhibitionPathway interactionsPatient-Focused OutcomesPatientsPharmaceutical PreparationsPlatinumPlatinum CompoundsProcessProteinsPublicationsRadiationReporterResearchResistanceScaffolding ProteinTestingTherapeuticTherapeutic InterventionToxinWorkX-Ray CrystallographyXenograft ModelXeroderma Pigmentosum Complementation Group Aanticancer treatmentantitumor drugcancer cellcancer genomecancer therapycancer typechemotherapycombinatorialdesigndrug sensitivitygene repairgenome databaseimprovedinhibitorinsightloss of function mutationmutantneoplastic cellprecision medicinerepairedreplication factor Ascaffoldsmall molecule inhibitortherapeutic evaluationtooltool developmenttranslational potentialtumor
项目摘要
SUMMARY
Nucleotide excision repair (NER) protects human cells by removing harmful DNA damage, but repair of
damaged DNA by NER can reduce the efficacy of some antitumor drugs such as cisplatin. NER genes are
frequently missense mutated in cancers and decreased expression or loss of function mutation of NER genes
ERCC1 and ERCC2, respectively, has been shown to correlate with improved patient outcomes after cisplatin
treatment. This proposal investigates the hypothesis that reduced NER capacity arising from tumor mutations
correlates with greater sensitivity to platinum (Pt) agents. It focuses on the NER scaffolding protein XPA, which
is required for proper assembly and organization of the NER machinery. XPA is an “Achilles Heel” of NER
because it interacts with the DNA substrate and nearly all core NER proteins. Our recent publications (i) show
NER is suppressed by XPA mutations that inhibit interaction with its partner scaffold RPA, and (ii) identify XPA
mutations from tumor genomes that disrupt NER, including some that our current work suggests are highly
likely to disrupt the interaction of XPA with RPA. Thus, XPA represents the ideal factor to investigate the
hypothesis that reduced NER capacity correlates with sensitivity to DNA damaging agents. Aim 1 will test the
hypothesis that missense mutations in XPA can lead to NER defects that reduce repair capacity and sensitize
tumor cells to Pt agents. XPA mutations will be screened for reduced NER capacity using a high throughput
reporter assay to select those for which NER deficiency will be further characterized in cells expressing XPA
mutants. We will then determine the mechanism of their dysfunction and test their sensitivity to Pt agents. Aim
2 will use a fragment-based discovery approach to develop small molecule inhibitors that disrupt the XPA-RPA
interaction to enable further tests of the correlation between NER capacity and sensitivity to Pt agents. A highly
curated library of small molecular fragments will be screened by NMR and the binding location and orientation
of ‘hits’ will be defined by X-ray crystallography. After cycles of optimization involving structural analysis, design,
and evaluation, linked fragment compounds will be validated for physically inhibiting XPA-RPA interaction,
suppressing NER, and eliciting sensitivity to Pt agents in cancer cell lines. Together, these aims will not only
test the correlation between NER deficiency and sensitivity to Pt agents, but also generate tool compounds
that lay the foundation for testing the therapeutic value of inhibiting NER. They will also provide valuable insights
to move closer to the use of Pt sensitivity predictors in the clinic and explore how NER inhibition affects
sensitivity to other DNA damaging agents. Ultimately, we seek to understand how the tumor genomic landscape
predisposes cancer cells to drug sensitivity to enable identification of patient tumors that will be sensitive to
DNA damaging agents alone or require combinatorial treatment with NER inhibitors.
摘要
核苷酸切除修复(NER)通过去除有害的DNA损伤来保护人类细胞,但修复
NER对DNA的损伤会降低顺铂等抗肿瘤药物的疗效。NER基因是
NER基因在癌症中频繁错义突变和表达减少或功能丧失突变
ERCC1和ERCC2分别被证明与顺铂治疗后患者预后的改善有关
治疗。这一建议调查了肿瘤突变引起的NER能力降低的假设
与对铂(铂)试剂的更高敏感性相关。它关注的是NER支架蛋白XPA,它
是正确组装和组织NER机械所必需的。XPA是NER的“阿喀琉斯之踵”
因为它与DNA底物和几乎所有的核心NER蛋白相互作用。我们最近的出版物(I)显示
NER被XPA突变抑制,XPA突变抑制了与其伙伴支架RPA的相互作用,以及(Ii)鉴定XPA
来自肿瘤基因组的突变会破坏NER,包括我们目前的工作表明的一些高度
可能会破坏XPA与RPA的相互作用。因此,XPA代表了研究
假设NER能力降低与对DNA损伤剂的敏感性有关。目标1将测试
假设XPA错义突变会导致NER缺陷,从而降低修复能力并使其敏感
肿瘤细胞对铂剂的作用。将使用高吞吐量筛选XPA突变,以确定NER容量是否减少
报告分析以选择那些在表达XPA的细胞中将进一步表征NER缺乏的基因
变种人。然后,我们将确定它们功能障碍的机制,并测试它们对铂试剂的敏感性。目标
2将使用基于片段的发现方法来开发破坏XPA-RPA的小分子抑制剂
相互作用,以便进一步测试NER容量和对铂剂敏感性之间的相关性。一位高度
小分子片段的精选文库将通过核磁共振以及结合位置和方向进行筛选
“Hits”的定义将由X射线结晶学定义。经过包括结构分析、设计、
和评估,连接的片段化合物将被验证为物理地抑制XPA-RPA相互作用,
抑制NER,并在癌细胞系中引起对铂试剂的敏感性。这些目标加在一起,不仅将
测试NER缺乏与铂试剂敏感性之间的相关性,但也会产生工具化合物
这为测试抑制NER的治疗价值奠定了基础。他们还将提供有价值的见解
更接近于在临床上使用铂敏感性预测指标,并探索NER抑制如何影响
对其他DNA损伤剂的敏感性。最终,我们试图了解肿瘤基因组图是如何
使癌细胞对药物敏感,从而能够识别对药物敏感的患者肿瘤
单独使用DNA损伤剂或需要与NER抑制剂联合治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WALTER J. CHAZIN其他文献
WALTER J. CHAZIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WALTER J. CHAZIN', 18)}}的其他基金
The XPA scaffold protein in Nucleotide Excision Repair
核苷酸切除修复中的 XPA 支架蛋白
- 批准号:
10334466 - 财政年份:2018
- 资助金额:
$ 47.12万 - 项目类别:
Structural Biology of Multi-Domain Proteins and Multi-Protein Machinery in DNA Replication and Repair
DNA 复制和修复中多域蛋白和多蛋白机制的结构生物学
- 批准号:
10393403 - 财政年份:2016
- 资助金额:
$ 47.12万 - 项目类别:
Integrative Structural Biology in DNA Replication and Damage Response
DNA 复制和损伤反应中的综合结构生物学
- 批准号:
10796477 - 财政年份:2016
- 资助金额:
$ 47.12万 - 项目类别:
Structural Biology of Multi-Domain Proteins and Multi-Protein Machinery in DNA Replication and Repair
DNA 复制和修复中多域蛋白和多蛋白机制的结构生物学
- 批准号:
10382072 - 财政年份:2016
- 资助金额:
$ 47.12万 - 项目类别:
Integrative Structural Biology in DNA Replication and Damage Response
DNA 复制和损伤反应中的综合结构生物学
- 批准号:
10544307 - 财政年份:2016
- 资助金额:
$ 47.12万 - 项目类别:
Integrative Structural Biology in DNA Replication and Damage Response
DNA 复制和损伤反应中的综合结构生物学
- 批准号:
10330665 - 财政年份:2016
- 资助金额:
$ 47.12万 - 项目类别:
Integrative Structural Biology in DNA Replication and Damage Response
DNA 复制和损伤反应中的综合结构生物学
- 批准号:
10809376 - 财政年份:2016
- 资助金额:
$ 47.12万 - 项目类别:
Host-mediated zinc sequestration during Acinetobacter baumannii infection
鲍曼不动杆菌感染期间宿主介导的锌螯合
- 批准号:
10680779 - 财政年份:2013
- 资助金额:
$ 47.12万 - 项目类别:
Host-mediated zinc sequestration during Acinetobacter baumannii infection
鲍曼不动杆菌感染期间宿主介导的锌螯合
- 批准号:
10331783 - 财政年份:2013
- 资助金额:
$ 47.12万 - 项目类别:
Host-mediated zinc sequestration during Acinetobacter baumannii infection
鲍曼不动杆菌感染期间宿主介导的锌螯合
- 批准号:
8504420 - 财政年份:2013
- 资助金额:
$ 47.12万 - 项目类别:
相似海外基金
Applications of Deep Learning for Binding Affinity Prediction
深度学习在结合亲和力预测中的应用
- 批准号:
2887848 - 财政年份:2023
- 资助金额:
$ 47.12万 - 项目类别:
Studentship
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 47.12万 - 项目类别:
Building a binding community - Capacity and capability for affinity and kinetic analysis of molecular interactions.
建立结合社区 - 分子相互作用的亲和力和动力学分析的能力和能力。
- 批准号:
MR/X013227/1 - 财政年份:2022
- 资助金额:
$ 47.12万 - 项目类别:
Research Grant
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长程氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10797940 - 财政年份:2022
- 资助金额:
$ 47.12万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10502084 - 财政年份:2022
- 资助金额:
$ 47.12万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10707418 - 财政年份:2022
- 资助金额:
$ 47.12万 - 项目类别:
Binding affinity of inositol phosphate analogs to protein toxin TcdB
磷酸肌醇类似物与蛋白质毒素 TcdB 的结合亲和力
- 批准号:
573604-2022 - 财政年份:2022
- 资助金额:
$ 47.12万 - 项目类别:
University Undergraduate Student Research Awards
Computational predictions of thermostability and binding affinity changes in enzymes
酶热稳定性和结合亲和力变化的计算预测
- 批准号:
2610945 - 财政年份:2021
- 资助金额:
$ 47.12万 - 项目类别:
Studentship
I-Corps: Physics-Based Binding Affinity Estimator
I-Corps:基于物理的结合亲和力估计器
- 批准号:
2138667 - 财政年份:2021
- 资助金额:
$ 47.12万 - 项目类别:
Standard Grant
Computational modelling and simulation of antibodies to enhance binding affinity of a potential Burkholderia pseudomallei therapeutic
抗体的计算模型和模拟,以增强潜在的鼻疽伯克霍尔德氏菌治疗剂的结合亲和力
- 批准号:
2750554 - 财政年份:2021
- 资助金额:
$ 47.12万 - 项目类别:
Studentship














{{item.name}}会员




