Host-mediated zinc sequestration during Acinetobacter baumannii infection
鲍曼不动杆菌感染期间宿主介导的锌螯合
基本信息
- 批准号:10680779
- 负责人:
- 金额:$ 76.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:Acinetobacter baumanniiAntibioticsAntimicrobial ResistanceAreaBacteremiaBacteriaBacterial InfectionsBindingBiologicalBiologyCell WallCellsClientCommunicable DiseasesDataDepositionDietary ZincDiseaseEnabling FactorsEndocarditisEnzymesEventFamilyGenesGenomeGenomicsGrowthGuanosine Triphosphate PhosphohydrolasesHomeostasisHost DefenseImmuneInfectionIntakeIntensive Care UnitsLeukocyte L1 Antigen ComplexLyticMacromolecular ComplexesMeasuresMediatingMeningitisMetabolismMetalloproteinsMetalsModelingNamesNutrientNutritionalNutritional ImmunityNutritional RequirementsOrganismOutcomePathogenesisPeptidoglycanPhenotypePhysiologicalPneumoniaProcessProliferatingPropertyProteinsPublic HealthRecyclingRegulationResearchResistanceRespiratory Tract InfectionsSentinelSeriesSignal TransductionStarvationTechnologyTestingTherapeutic InterventionUrinary tract infectionVariantWorkWound InfectionZincZinc deficiencycell envelopechelationclinically significantcombatdeprivationdietarydietary restrictionexperimental studygenomic locushuman pathogenlung colonizationmembermetalloenzymemortalitynew therapeutic targetnutrient deprivationpathogenpathogenic bacteriapathogenic microbepredictive modelingresponsetherapeutic developmenttherapy designvirtualzinc-binding protein
项目摘要
PROJECT SUMMARY
Acinetobacter baumannii is an important nosocomial pathogen that causes a range of diseases, including
respiratory and urinary tract infections, meningitis, endocarditis, wound infections, and bacteremia. In fact, A.
baumannii is now responsible for up to 20% of all intensive care unit infections in some regions of the world with
pneumonia being the most common presentation. The clinical significance of A. baumannii has been propelled
by this organism’s rapid acquisition of resistance to virtually all antibiotics. The identification of novel targets for
therapeutic intervention is critical to our ability to protect the public health from this emerging infectious threat.
A promising area of therapeutic development exploits the idea that all bacterial pathogens require nutrient metal
to cause infection. This approach mimics host-mediated metal sequestration, which is a potent defense against
infection in a process termed “nutritional immunity”. Paradoxically, dietary restriction of metal exacerbates
infection underscoring how alterations in metal abundance can profoundly impact the outcome of host-pathogen
interactions. The host protein calprotectin (CP) is one of the most important contributors to immune-mediated
metal restriction and CP protects against infection through the chelation of nutrient metals, including zinc (Zn).
Using CP as a probe, we have uncovered a genetic locus within A. baumannii that is important for survival
during conditions of CP-dependent Zn starvation. This locus encodes a member of the conserved COG0523
family of GTPases that we have named Zur-induced GTPase A (ZigA). We have also found a second COG0523
member within the A. baumannii genome that we refer to as 0934. ZigA and 0934 have biological properties
consistent with metallochaperones that insert Zn into client proteins. Our preliminary data indicate that 0934 and
ZigA bind and regulate client metalloenzymes involved in cell wall synthesis and recycling. Based on these
fundamental discoveries, we hypothesize that A. baumannii colonization of the lung leads to massive
accumulation of CP which starves A. baumannii for nutrient Zn. We further hypothesize that ZigA and 0934
regulate cell wall remodeling during Zn starvation to accommodate insertion of nutrient Zn transporters into the
cell envelope that are necessary to combat host- or dietary-imposed Zn starvation.
To test this central model, we propose a series of experiments aimed at understanding the mechanism and
pathophysiological consequence of the A. baumannii response to dietary and host-imposed Zn deprivation
during pneumonia. In these studies, we will (i) define the molecular interactions of ZigA and 0934 with their
metalloprotein clients, (ii) interrogate the physiological function of ZigA and 0934 in A. baumannii, and (iii)
determine the importance of ZigA and 0934 in response to Zn starvation during the pathogenesis of pneumonia.
This research will establish a new paradigm for how bacteria respond to dietary- or immune-mediated Zn
restriction during infection through metallochaperone-dependent regulation of cell wall homeostasis.
项目摘要
鲍曼不动杆菌是一种重要的院内致病菌,可引起一系列疾病,包括
呼吸道和泌尿道感染、脑膜炎、心内膜炎、伤口感染和菌血症。事实上,A.
在世界上的一些地区,鲍曼不动杆菌感染占所有重症监护病房感染的20%,
肺炎是最常见的症状。探讨了A.鲍曼不动杆菌
这种微生物对几乎所有抗生素都能迅速产生耐药性。新靶点的确定
治疗干预对于我们保护公众健康免受这一新出现的传染病威胁的能力至关重要。
一个有希望的治疗发展领域利用了所有细菌病原体都需要营养金属的想法
以引起感染。这种方法模拟了宿主介导的金属封存,这是一种有效的防御方法
感染过程称为“营养免疫”。奇怪的是,金属的饮食限制加剧了
感染强调金属丰度的改变如何深刻影响宿主-病原体的结果
交互.宿主蛋白钙卫蛋白(CP)是免疫介导的免疫应答的最重要的贡献者之一。
金属限制和CP通过螯合营养金属(包括锌(Zn))来防止感染。
利用CP作为探针,我们发现了A.鲍曼不动杆菌对生存很重要
在CP依赖性锌饥饿的条件下。该基因座编码保守的COG 0523的一个成员,
GTPases家族,我们将其命名为ZigA(ZigA)。我们还发现了第二个COG 0523
A中的成员。我们称之为0934的鲍曼不动杆菌基因组ZigA和0934具有生物学特性
与将锌插入客户蛋白的金属伴侣蛋白一致。我们的初步数据表明,0934和
ZigA结合并调节参与细胞壁合成和再循环的客户金属酶。基于这些
基本发现,我们假设A.鲍曼不动杆菌在肺部的定植导致大规模的
使A饥饿的CP的积累。鲍曼不动杆菌对锌的营养作用。我们进一步假设ZigA和0934
在锌饥饿期间调节细胞壁重塑,以适应营养锌转运蛋白插入细胞壁,
细胞被膜,这是必要的,以打击主机或饮食强加的锌饥饿。
为了检验这个中心模型,我们提出了一系列旨在理解机制的实验,
病理生理后果的A.鲍曼不动杆菌对饮食和宿主锌剥夺的反应
在肺炎期间。在这些研究中,我们将(i)定义ZigA和0934的分子相互作用,
金属蛋白客户端,(ii)询问ZigA和0934在A.鲍曼不动杆菌,和(iii)
确定ZigA和0934在肺炎发病过程中响应锌饥饿的重要性。
这项研究将为细菌如何对饮食或免疫介导的锌做出反应建立一个新的范例
通过金属伴侣依赖性调节细胞壁稳态的感染期间的限制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WALTER J. CHAZIN其他文献
WALTER J. CHAZIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WALTER J. CHAZIN', 18)}}的其他基金
The XPA scaffold protein in Nucleotide Excision Repair
核苷酸切除修复中的 XPA 支架蛋白
- 批准号:
10733350 - 财政年份:2018
- 资助金额:
$ 76.41万 - 项目类别:
The XPA scaffold protein in Nucleotide Excision Repair
核苷酸切除修复中的 XPA 支架蛋白
- 批准号:
10334466 - 财政年份:2018
- 资助金额:
$ 76.41万 - 项目类别:
Structural Biology of Multi-Domain Proteins and Multi-Protein Machinery in DNA Replication and Repair
DNA 复制和修复中多域蛋白和多蛋白机制的结构生物学
- 批准号:
10393403 - 财政年份:2016
- 资助金额:
$ 76.41万 - 项目类别:
Integrative Structural Biology in DNA Replication and Damage Response
DNA 复制和损伤反应中的综合结构生物学
- 批准号:
10796477 - 财政年份:2016
- 资助金额:
$ 76.41万 - 项目类别:
Structural Biology of Multi-Domain Proteins and Multi-Protein Machinery in DNA Replication and Repair
DNA 复制和修复中多域蛋白和多蛋白机制的结构生物学
- 批准号:
10382072 - 财政年份:2016
- 资助金额:
$ 76.41万 - 项目类别:
Integrative Structural Biology in DNA Replication and Damage Response
DNA 复制和损伤反应中的综合结构生物学
- 批准号:
10544307 - 财政年份:2016
- 资助金额:
$ 76.41万 - 项目类别:
Integrative Structural Biology in DNA Replication and Damage Response
DNA 复制和损伤反应中的综合结构生物学
- 批准号:
10330665 - 财政年份:2016
- 资助金额:
$ 76.41万 - 项目类别:
Integrative Structural Biology in DNA Replication and Damage Response
DNA 复制和损伤反应中的综合结构生物学
- 批准号:
10809376 - 财政年份:2016
- 资助金额:
$ 76.41万 - 项目类别:
Host-mediated zinc sequestration during Acinetobacter baumannii infection
鲍曼不动杆菌感染期间宿主介导的锌螯合
- 批准号:
10331783 - 财政年份:2013
- 资助金额:
$ 76.41万 - 项目类别:
Host-mediated zinc sequestration during Acinetobacter baumannii infection
鲍曼不动杆菌感染期间宿主介导的锌螯合
- 批准号:
8504420 - 财政年份:2013
- 资助金额:
$ 76.41万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 76.41万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 76.41万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 76.41万 - 项目类别:
Research Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 76.41万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 76.41万 - 项目类别:
ARC Future Fellowships
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 76.41万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 76.41万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 76.41万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 76.41万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 76.41万 - 项目类别:
Studentship