Harmonizing data acquisition, reconstruction, and analysis for reproducible, cross-vendor, open source MRI
协调可重复、跨供应商、开源 MRI 的数据采集、重建和分析
基本信息
- 批准号:10704747
- 负责人:
- 金额:$ 63.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdoptionAlgorithmsAnisotropyAttenuatedBrainBrain DiseasesBrain regionCalibrationCodeCoronavirusDataDetectionDevelopmentDiffusion Magnetic Resonance ImagingDiseaseDisparateEcho-Planar ImagingEnvironmentFunctional Magnetic Resonance ImagingGoalsGrantHealthImageKnowledgeLaboratory ResearchLearningLiquid substanceMagnetic Resonance ImagingMapsMeasuresMental disordersNeurobiologyPathologyPerformancePhysiologic pulsePredispositionProtocols documentationProtonsRecommendationRecoveryRelaxationReproducibilityResearchResolutionSample SizeScanningSchemeSchizophreniaShapesSiteSliceSourceSystemTechniquesTechnologyTimeTissuesTranslational RepressionTranslationsTravelVariantVendorWorkdata acquisitiondata harmonizationdeep learningdensitygray matterhuman subjectimage reconstructionimprovedin vivoneuroimagingneuropsychiatric disordernovelopen sourcequantitative imagingradio frequencyradiologistreconstructionresearch studysimulationtransmission processwhite matter
项目摘要
Abstract
In this 5-year R01 project entitled “Harmonizing data acquisition, reconstruction, and analysis for reproducible,
cross-vendor, open-source MRI,” we address the significant barriers to scientific progress due to the large inter-
scanner variability (often more than 10-20%) present in multi-site MRI data which substantially diminishes the
power of neuroimaging studies to detect subtle pathologies in neuropsychiatric disorders. Inter-scanner biases
are a result of differences in implementation of closed-source product sequences (e.g., gradient and
radiofrequency pulse shapes and timing), the choice of reconstruction algorithms, as well as variations inherent
to the scanner hardware (e.g., gradient strength). Another major challenge is the significant barrier to develop
new sequences for each vendor separately. This inhibits the translation of new MRI technologies to research
laboratories, as vendor-specific sequence development environments are closed-source, proprietary, and suffer
from a steep learning curve.
In this project, we address these challenges by proposing an “end-to-end” harmonization framework. We
propose to develop and disseminate a single open-source vendor-neutral MRI pulse sequence development
environment containing both standard MRI protocols (e.g., T1-weighted, T2-weighted, and diffusion MRI) and
cutting-edge quantitative acquisitions (T1, T2, T2*, and quantitative susceptibility maps (QSM)), a unified image
reconstruction framework, and novel algorithms for post-acquisition data harmonization to enable multi-site
reproducible research and mitigate inter-scanner variability and bias. Our quantitative MRI acquisitions will be
efficient (5 min as opposed to more than 15 min) and also comprise of fast, distortion-free diffusion MRI
sequences. The performance of standard contrast-weighted protocols and the accuracy of novel quantitative
imaging sequences will be rigorously validated on phantoms and in-vivo data acquired from all major vendors
(Siemens, Philips, GE). Further, we will develop and validate novel data harmonization algorithms that will
remove any remaining scanner-induced discrepancies in the data due to hardware differences. One of the goals
of this project is to reduce inter-scanner variability to the level of those observed within-scanner. The technical
developments proposed in this grant will dramatically increase reproducibility across sites and allow for seamless
execution of multi-site neuroimaging studies. Thus, the increased statistical power of multi-site studies will
facilitate detection of subtle changes in neuropsychiatric disorders. Our open-source first-of-its-kind platform will
also accelerate cross-vendor sequence development and enable immediate translation of new sequences into
research studies (which currently takes several years).
摘要
在这个为期5年的R 01项目中,题为“协调数据采集、重建和分析,
跨供应商,开源MRI,“我们解决了由于大的内部,
多部位MRI数据中存在的扫描仪变异性(通常超过10-20%),
神经影像学研究的力量,以检测神经精神疾病的微妙病理。扫描仪间偏差
是闭源产品序列的实现中的差异的结果(例如,梯度和
射频脉冲形状和定时)、重建算法的选择以及固有变化
到扫描仪硬件(例如,梯度强度)。另一个主要挑战是发展的重大障碍
每个供应商的新序列分别。这抑制了新的MRI技术转化为研究
实验室,因为供应商特定的序列开发环境是封闭源代码、专有的,并且受到影响
从一个陡峭的学习曲线。
在这个项目中,我们通过提出一个“端到端”的协调框架来应对这些挑战。我们
我建议开发和传播一个单一的开源供应商中立的MRI脉冲序列的发展
包含标准MRI协议(例如,T1加权、T2加权和弥散MRI)和
尖端的定量采集(T1、T2、T2* 和定量磁化率图(QSM)),统一的图像
重建框架,以及用于采集后数据协调的新算法,
可重复的研究和减轻扫描仪间的变异性和偏见。我们的定量MRI采集将
高效(5分钟而不是超过15分钟),还包括快速、无失真的扩散MRI
序列的标准对比加权方案的性能和新的定量方法的准确性
成像序列将在从所有主要供应商获得的体模和体内数据上进行严格验证
(Siemens,Philips,GE)。此外,我们将开发和验证新的数据协调算法,
消除由于硬件差异而导致的数据中任何剩余的扫描仪引起的差异。的目标之一
该项目的主要目的是将扫描仪间的变异性降低到扫描仪内观察到的水平。技术
该补助金中提出的发展将大大提高跨站点的可重复性,并允许无缝
进行多部位神经影像学研究。因此,多中心研究的统计功效增加将
有助于检测神经精神疾病的细微变化。我们的开源首创平台将
还可加快跨供应商序列开发,并可将新序列立即转换为
研究(目前需要几年时间)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Berkin Bilgic其他文献
Berkin Bilgic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Berkin Bilgic', 18)}}的其他基金
Hybrid TMS/MRI system for regionally tailored causal mapping of human cortical circuits and connectivity
混合 TMS/MRI 系统,用于按区域定制人类皮质回路和连接的因果图谱
- 批准号:
10730783 - 财政年份:2023
- 资助金额:
$ 63.54万 - 项目类别:
Advanced Neuroimaging through Novel Encoding Strategies and Hardware Design
通过新颖的编码策略和硬件设计实现先进的神经成像
- 批准号:
10517507 - 财政年份:2020
- 资助金额:
$ 63.54万 - 项目类别:
Advanced Neuroimaging through Novel Encoding Strategies and Hardware Design
通过新颖的编码策略和硬件设计实现先进的神经成像
- 批准号:
10090600 - 财政年份:2020
- 资助金额:
$ 63.54万 - 项目类别:
Advanced Neuroimaging through Novel Encoding Strategies and Hardware Design
通过新颖的编码策略和硬件设计实现先进的神经成像
- 批准号:
10304118 - 财政年份:2020
- 资助金额:
$ 63.54万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 63.54万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 63.54万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 63.54万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 63.54万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 63.54万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 63.54万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 63.54万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 63.54万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 63.54万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 63.54万 - 项目类别:
Standard Grant














{{item.name}}会员




