Discovering Care Coordination Practice Patterns in the EMR: Interpretation and Impact on Patient Outcomes

发现电子病历中的护理协调实践模式:解释及其对患者结果的影响

基本信息

  • 批准号:
    10015335
  • 负责人:
  • 金额:
    $ 36.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-10 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Healthcare expenditures in the United States reached $3.5 trillion in 2017, up 4.6 percent from 2016. It has been recognized that prolonged length of stay (LOS) and unplanned readmission are two of the primary causes of higher healthcare costs. Determining which factors are associated with prolonged LOS and unplanned readmission will provide valuable knowledge about how to reduce costs and improve care delivery. The Agency for Healthcare Research and Quality (AHRQ) has recognized that care fragmentation under a fee- for-service system can lead to various problems, including poor harmonization of services and unnecessary testing and procedures, all of which have the potential to extend LOS and unplanned readmissions. Effective care coordination, has been proposed to resolve many of these problems, and is a priority of the National Quality Strategy, which is led by AHRQ. Yet, there are numerous challenges to measuring the effectiveness of care coordination. In particular, there is a lack of a clear relationship with a patient’s outcome (e.g., prolonged LOS or unplanned readmission). Electronic medical record (EMR)-based care coordination measures have been highlighted by AHRQ for three potential advantages: i) minimal data collection burden, ii) rich clinical context and iii) longitudinal patient observation. However, current EMR-based measures focus on an assessment of EMR systems (e.g., meaningful use) and compare effectiveness of care at a coarse-grained level (e.g., the relation between meaningful use of an EMR system and reduction in LOS or unplanned readmission rates). Unfortunately, such measures neglect the specific drivers (e.g., variations of interactions between healthcare professionals) of variability in LOS and unplanned readmission rates. In this project, we will develop an EMR-based framework to characterize care coordination at a fine-grained level, which accounts for the interaction network between two or more healthcare professionals (e.g., doctors, nurses, social workers, care managers, and supporting staff) involved in a patient’s care - and measure its impact on LOS and unplanned readmission. To achieve the goal, we will design i) data mining algorithms to automatically learn care coordination patterns and analyze LOS and unplanned readmission from the EMRs of ~2.3 million patients at a large academic medical center with a long history of EMR use; ii) hypothesis-driven approaches to quantify the relationship between a learned pattern and LOS and unplanned readmission, where a patient’s demographics (e.g., age, race and sex) will be considered as confounding variables; and iii) an interpretation process to translate the inferred patterns into actionable criteria for HCOs. This research is notable because methods created in the project can be served as a scientific basis to automatically i) learn care coordination patterns across a wild range of healthcare services and health conditions; and ii) measure the effectiveness of these patterns via their relationships with various patient outcomes (e.g., LOS and unplanned readmission).
2017年,美国的医疗保健支出达到3.5万亿美元,比2016年增长4.6%。它有 已经认识到,住院时间延长(LOS)和计划外再入院是两个主要的 导致医疗费用上涨。确定哪些因素与延长的服务水平相关, 计划外再入院将提供关于如何降低成本和改善护理提供的宝贵知识。 医疗保健研究和质量机构(AHRQ)已经认识到,在收费制度下, 服务系统可能会导致各种问题,包括服务协调性差和不必要的 所有这些都有可能延长LOS和计划外再入院。有效 护理协调,已被提议解决其中许多问题,是国家的优先事项, 质量战略,由AHRQ领导。 然而,在衡量护理协调的有效性方面存在许多挑战。尤其是 缺乏与患者结果的明确关系(例如,延长的LOS或计划外再入院)。 AHRQ强调了基于电子病历(EMR)的护理协调措施, 潜在优势:i)最小的数据收集负担,ii)丰富的临床背景和iii)纵向患者 观察.然而,目前基于EMR的措施侧重于EMR系统的评估(例如, 有意义的使用)并在粗粒度级别比较护理的有效性(例如,的关系 EMR系统的有意义的使用和LOS或计划外再入院率的降低)。可惜这样 测量忽略了特定的驱动因素(例如,医疗保健专业人员之间的相互作用的变化) LOS和计划外再入院率的变异性。在这个项目中,我们将开发一个基于电子病历的框架 在细粒度级别上表征护理协调,这说明了 两名或更多医疗保健专业人员(例如,医生,护士,社会工作者,护理经理,和支持 工作人员)参与病人的护理-并衡量其对LOS和计划外再入院的影响。 为了实现这一目标,我们将设计i)数据挖掘算法来自动学习护理协调模式 并从一个大型学术机构的约230万患者的EMR中分析LOS和计划外再入院。 一个有着悠久EMR使用历史的医疗中心; ii)假设驱动的方法来量化关系 学习模式和LOS与计划外再入院之间的关系,其中患者的人口统计学(例如,年龄, 种族和性别)将被视为混杂变量;和iii)解释过程, 推断出的模式转化为HCO的可操作标准。这项研究是值得注意的,因为方法创建于 项目可以作为科学基础,以自动i)学习野生动物的护理协调模式, 一系列的医疗保健服务和健康状况;和ii)衡量这些模式的有效性, 与各种患者结果的关系(例如,LOS和计划外再入院)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

You Chen其他文献

Association of Cigarette Consumption and Body Mass Index in the Cardiovascular Risk Survey
心血管风险调查中香烟消费与体重指数的关联

You Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('You Chen', 18)}}的其他基金

Machine learning drives translational research from drug interactions to pharmacogenetics
机器学习推动从药物相互作用到药物遗传学的转化研究
  • 批准号:
    10608598
  • 财政年份:
    2023
  • 资助金额:
    $ 36.98万
  • 项目类别:
Discovering Care Coordination Practice Patterns in the EMR: Interpretation and Impact on Patient Outcomes
发现电子病历中的护理协调实践模式:解释及其对患者结果的影响
  • 批准号:
    10460162
  • 财政年份:
    2019
  • 资助金额:
    $ 36.98万
  • 项目类别:
Discovering Care Coordination Practice Patterns in the EMR: Interpretation and Impact on Patient Outcomes
发现电子病历中的护理协调实践模式:解释及其对患者结果的影响
  • 批准号:
    10217257
  • 财政年份:
    2019
  • 资助金额:
    $ 36.98万
  • 项目类别:
Learning Patterns of Collaboration to Optimize the Management of Care Providers
学习协作模式以优化护理提供者的管理
  • 批准号:
    9265940
  • 财政年份:
    2015
  • 资助金额:
    $ 36.98万
  • 项目类别:
Learning Patterns of Collaboration to Optimize the Management of Care Providers
学习协作模式以优化护理提供者的管理
  • 批准号:
    9260987
  • 财政年份:
    2015
  • 资助金额:
    $ 36.98万
  • 项目类别:
Learning Patterns of Collaboration to Optimize the Management of Care Providers
学习协作模式以优化护理提供者的管理
  • 批准号:
    8820357
  • 财政年份:
    2015
  • 资助金额:
    $ 36.98万
  • 项目类别:

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 36.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 36.98万
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 36.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 36.98万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 36.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 36.98万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 36.98万
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 36.98万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 36.98万
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 36.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了