Mechanisms and functions of chromatin regulation for cell-cycle control
细胞周期控制染色质调控的机制和功能
基本信息
- 批准号:10015288
- 负责人:
- 金额:$ 36.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectBindingBiologicalCancer BiologyCell CycleCell Cycle RegulationCell Differentiation processCell MaintenanceCell NucleusCell SurvivalCell divisionCellsChromatinChromatin FiberChromatin StructureDNADNA RepairDNA biosynthesisDNA damage checkpointDevelopmentEukaryotic CellFiberFibroblastsFundingGenetic RecombinationGenetic TranscriptionGenome StabilityGoalsHigher Order Chromatin StructureHistone DeacetylaseHumanKinetochoresKnowledgeMaintenanceMalignant NeoplasmsMessenger RNAMethodsMitotic Cell CycleModelingMolecularMutationNucleosomesOrganismPhysiologicalPlayPositioning AttributeProcessPropertyRNA DegradationRNA StabilityRegulationResearchResearch PersonnelResolutionRoleSaccharomyces cerevisiaeSaccharomycetalesStructureSystemTechniquesTestingTimeWorkYeastsbasecancer preventioncondensindriver mutationexosomegene repressionhistone modificationin vivomRNA StabilitymRNA Transcript Degradationnucleasestem cellstomographytranscriptome
项目摘要
Project Summary/Abstract
which cell-cycle is regulated, with an emphasis on mechanisms of cell quiescence through chromatin
regulation. Eukaryotic cells, from single cell organisms to humans, spend most of their time in
quiescence, in which cell exit mitotic cell-cycle in a reversible fashion for long-term survival. Proper
control of entry into, maintenance of, and exit from quiescence is essential for cell survival, normal
development of organisms, stem cell maintenance and prevention of cancer. However, molecular
mechanisms underlying quiescence remains largely unknown. Chromatin regulation plays integral roles
in a wide variety of DNA-dependent processes, including transcription, DNA replication, DNA repair,
recombination, kinetochore formation, and DNA damage checkpoint response. Therefore, elucidating
the mechanisms of chromatin regulation is a necessary prerequisite for understanding how these
essential processes are controlled. One of the major challenges in studying chromatin regulation is to
elucidate how chromatin regulation affects such a wide variety of processes in the context of important
biological contexts, such as cell cycle control and cell differentiation. This is a particularly important
challenge, because it was recently determined that mutations in chromatin regulators represent one
major class of so called cancer driver mutations, and how these mutations accerelate cancer
development remains unknown. Therefore, elucidating the mechanisms of chromatin regulation impacts
not only the researchers who study fundamental principle of DNA-dependent processes, but also those
who investigate cancer biology and mechanisms of genome stability maintenance.
It was recently found that the budding yeast S. cerevisiae can enter quiescent state that share
many properties with mammalian quiescence, and a method to purify the quiescent cell was developed.
Taking advantage of this system, we have found strong evidence that degradation of specific sets of
mRNA is essential for quiescence entry. This strongly suggest the presence of currently unknown
mechanism to regulate quiescence entry. We have also found that the high-order structure of chromatin
is regulated in quiescence in a way distinct from exponentially growing cells. First, we found that
condensin, a highly conserved regulator of chromatin higher-order structure, globally re-localizes during
quiescence entry and play key roles in chromatin domain structure in quiescent cells. Secondly, we
found that nucleosome arrays are folded into different fashion in quiescent cells. We will take
advantage of these recent findings and determine the molecular basis for these observations, which will
address a significant gap in our current knowledge about mechanisms underlying quiescence and
higher-order chromatin structure.
项目摘要/摘要
哪个细胞周期受调节,重点是通过染色质细胞静止的机理
规定。从单细胞生物到人类的真核细胞将大部分时间花在
静止,其中细胞以可逆的方式出现有丝分裂细胞周期,以实现长期生存。恰当的
控制进入,维持和退出静脉的控制对于细胞存活至关重要,正常
生物的发展,干细胞维持和预防癌症。但是,分子
静脉静止的机制在很大程度上未知。染色质调节起着不可或缺的作用
在多种DNA依赖性过程中,包括转录,DNA复制,DNA修复,
重组,动力学形成和DNA损伤检查点响应。因此,阐明
染色质调节的机制是理解这些方法的必要先决条件
基本过程受到控制。研究染色质调节的主要挑战之一是
阐明染色质调节如何在重要的背景下影响如此广泛的过程
生物环境,例如细胞周期控制和细胞分化。这是一个特别重要的
挑战,因为最近确定染色质调节剂中的突变代表一个
所谓的癌症驱动突变的主要类别,以及这些突变如何加速癌症
发展仍然未知。因此,阐明染色质调节的机制
不仅研究DNA依赖过程基本原则的研究人员,而且还
研究了癌症生物学和基因组稳定性维持的机制。
最近发现,酿酒酵母发芽的酵母菌可以输入共享的静态状态
许多具有哺乳动物静止的特性,以及一种净化静态细胞的方法。
利用该系统,我们发现有力的证据表明特定集的一组
mRNA对于静止进入至关重要。这强烈表明目前未知的存在
调节静态进入的机制。我们还发现染色质的高阶结构
以与指数生长的细胞不同的方式进行静止调节。首先,我们发现
冷凝蛋白是一种高度保守的染色质高阶结构的调节剂,在全球范围内重新定位
静止输入并在静态细胞中的染色质结构结构中起关键作用。其次,我们
发现在静态细胞中,核小体阵列被折叠成不同的方式。我们会接受的
这些最新发现的优势,并确定这些观察结果的分子基础,这将
解决我们当前有关静止机制的知识的显着差距
高阶染色质结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TOSHIO TSUKIYAMA其他文献
TOSHIO TSUKIYAMA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TOSHIO TSUKIYAMA', 18)}}的其他基金
Molecular mechanisms and functions of global chromatin control
整体染色质控制的分子机制和功能
- 批准号:
10318937 - 财政年份:2021
- 资助金额:
$ 36.21万 - 项目类别:
Molecular mechanisms and functions of global chromatin control
整体染色质控制的分子机制和功能
- 批准号:
10543987 - 财政年份:2021
- 资助金额:
$ 36.21万 - 项目类别:
Molecular mechanisms and functions of global chromatin control
整体染色质控制的分子机制和功能
- 批准号:
10084670 - 财政年份:2021
- 资助金额:
$ 36.21万 - 项目类别:
Molecular mechanisms and functions of global chromatin control
整体染色质控制的分子机制和功能
- 批准号:
10645489 - 财政年份:2021
- 资助金额:
$ 36.21万 - 项目类别:
Mechanisms and functions of chromatin regulation for cell-cycle control
细胞周期控制染色质调控的机制和功能
- 批准号:
10616221 - 财政年份:2015
- 资助金额:
$ 36.21万 - 项目类别:
Mechanisms and functions of chromatin regulation for cell-cycle control
细胞周期控制染色质调控的机制和功能
- 批准号:
9062463 - 财政年份:2015
- 资助金额:
$ 36.21万 - 项目类别:
Mechanisms and functions of chromatin regulation for cell-cycle control
细胞周期控制染色质调控的机制和功能
- 批准号:
8879556 - 财政年份:2015
- 资助金额:
$ 36.21万 - 项目类别:
Mechanisms and functions of chromatin regulation for cell-cycle control
细胞周期控制染色质调控的机制和功能
- 批准号:
9815856 - 财政年份:2015
- 资助金额:
$ 36.21万 - 项目类别:
Regulation of DNA replication by histone modifications
通过组蛋白修饰调节 DNA 复制
- 批准号:
7268774 - 财政年份:2006
- 资助金额:
$ 36.21万 - 项目类别:
Regulation of DNA replication by histone modifications
通过组蛋白修饰调节 DNA 复制
- 批准号:
7660491 - 财政年份:2006
- 资助金额:
$ 36.21万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 36.21万 - 项目类别: