Deep LOGISMOS
深度逻辑
基本信息
- 批准号:10016301
- 负责人:
- 金额:$ 39.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-04-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptionAge related macular degenerationAlgorithmsAngiographyAreaAutomationAwarenessBiomedical ComputingCardiacCardiologyCardiovascular systemCaringClinicalClinical MedicineClinical ResearchComplexComputational ScienceConsumptionDataData SetDevelopmentDiagnosticDiagnostic Neoplasm StagingFDA approvedFailureFundus photographyGenerationsGlaucomaGoalsGraphHealthcareHumanImageImage AnalysisIndividualLearningLocationMalignant NeoplasmsManualsMedicalMedical ImagingMedicineMethodsModalityMorphologyMyocardial InfarctionNatureOphthalmologyOrganPET/CT scanPatient CarePatientsPerformancePhaseProblem SolvingPublicationsQuality ControlRadiation OncologyResearchResearch Project GrantsRetinaRoleSliceStrokeSuggestionSurfaceTechniquesTechnologyThree-dimensional analysisTimeTissuesTrainingTumor Tissueadjudicationautomated analysisautomated segmentationbasebioimagingclinical careclinical imagingclinical practicedeep learningdiabeticexperienceflexibilityimaging Segmentationimaging modalityimprovedinnovationinsightlearning strategymacular edeman-dimensionalprecision medicineresponsesegmentation algorithmsuccesstask analysistreatment planning
项目摘要
Abstract:
This is a competitive continuation of a project that already yielded the highly flexible, accurate, and
broadly applicable LOGISMOS framework for context-aware n-dimensional image segmentation. To
substantially improve and extend its capability, we will develop Deep LOGISMOS that combines and
reinforces the complementary advantages of LOGISMOS and deep learning (DL).
There is growing need for quantitative failure-free 3D and higher-D image analysis for diagnostic and/or
planning purposes. Examples of current use exist in radiation oncology, cardiology, ophthalmology and
other areas of routine clinical medicine, many of which however still rely on manual slice-by-slice tracing.
This manual nature of such analyses hinders their use in precision medicine. Deep LOGISMOS research
proposed here will solve this problem and will offer routine efficient analysis of clinical images of
analyzable quality.
To stimulate a new phase of this research project, we hypothesize that: Advanced graph-based image
segmentation algorithms, when combined with deep-learning-derived application/modality specific
parameters and allowing highly efficient expert-analyst guidance working in concert with the
segmentation algorithms, will significantly increase quantitative analysis performance in routinely
acquired, complex, diagnostic-quality medical images across diverse application areas.
The proposed research focuses on establishing an image segmentation and analysis framework
combining the strengths of LOGISMOS and DL, developing a new way to efficiently generate training
data necessary for learning from examples, forming a failure-free strategy for 3D, 4D, and generally n-D
quantitative medical image analysis, and discovering ways for automated segmentation quality control.
We will fulfill these specific aims:
1. Develop an efficient approach for building large segmentation training datasets in 3D, 4D, n-D
using assisted and suggestive annotations.
2. Develop Deep LOGISMOS, combining two well-established algorithmic strategies – deep learning
and LOGISMOS graph search.
3. Develop and validate methods employing deep learning for quality control of Deep LOGISMOS.
4. In healthcare-relevant applications, demonstrate that Deep LOGISMOS improves segmentation
performance in comparison with state-of-the-art segmentation techniques.
Deep LOGISMOS will bring broadly available routine quantification of clinical images, positively
impacting the role of reliable image-based information in tomorrow’s precision medicine.
摘要:
这是一个有竞争力的项目,已经产生了高度灵活,准确,
广泛适用的LOGISMOS框架,用于上下文感知的n维图像分割。到
我们将开发深度LOGISMOS,
强化了LOGISMOS和深度学习(DL)的互补优势。
对于用于诊断和/或诊断的定量无故障3D和更高D图像分析的需求日益增长。
规划目的。目前使用的实例存在于放射肿瘤学、心脏病学、眼科学和放射治疗学中。
常规临床医学的其他领域,然而,其中许多仍然依赖于手动逐片追踪。
这种分析的手动性质阻碍了它们在精确医学中的使用。深度LOGISMOS研究
这里提出的将解决这个问题,并将提供常规的有效分析的临床图像,
可分析的质量。
为了刺激这个研究项目的新阶段,我们假设:高级基于图形的图像
分割算法,当与深度学习衍生的应用程序/特定模态相结合时
参数,并允许高效的专家分析指导与
分割算法,将显着提高定量分析性能,在常规
在不同的应用领域中,采集复杂的诊断质量的医学图像。
本文的研究重点是建立一个图像分割和分析框架
结合LOGISMOS和DL的优势,开发一种有效生成培训的新方法
从示例中学习所需的数据,形成3D,4D和一般n-D的无故障策略
定量医学图像分析,并发现自动分割质量控制的方法。
我们将实现这些具体目标:
1.开发一种高效的方法,用于构建3D、4D、n-D的大型分割训练数据集
使用辅助和暗示性注释。
2.开发深度LOGISMOS,结合两种成熟的算法策略-深度学习
logismos graph search。
3.开发和验证采用深度学习进行深度LOGISMOS质量控制的方法。
4.在医疗保健相关应用中,证明Deep LOGISMOS可改善分割
与最先进的分割技术相比,
深度LOGISMOS将带来广泛可用的临床图像的常规量化,
影响可靠的基于图像的信息在未来精准医疗中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN M. BUATTI其他文献
JOHN M. BUATTI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN M. BUATTI', 18)}}的其他基金
Using Ketogenic Diets to Enhance Radio-Chemo-Therapy Response: A Phase I Trial
使用生酮饮食增强放射化疗反应:一期试验
- 批准号:
8333333 - 财政年份:2011
- 资助金额:
$ 39.63万 - 项目类别:
Using Ketogenic Diets to Enhance Radio-Chemo-Therapy Response: A Phase I Trial
使用生酮饮食增强放射化疗反应:一期试验
- 批准号:
8175225 - 财政年份:2011
- 资助金额:
$ 39.63万 - 项目类别:
Quantitative Imaging to Assess Response in Cancer Therapy Trials
定量成像评估癌症治疗试验中的反应
- 批准号:
8636907 - 财政年份:2010
- 资助金额:
$ 39.63万 - 项目类别:
Quantitative Imaging to Assess Response in Cancer Therapy Trials
定量成像评估癌症治疗试验中的反应
- 批准号:
7891013 - 财政年份:2010
- 资助金额:
$ 39.63万 - 项目类别:
Quantitative Imaging to Assess Response in Cancer Therapy Trials
定量成像评估癌症治疗试验中的反应
- 批准号:
8456899 - 财政年份:2010
- 资助金额:
$ 39.63万 - 项目类别:
Quantitative Imaging to Assess Response in Cancer Therapy Trials
定量成像评估癌症治疗试验中的反应
- 批准号:
8244350 - 财政年份:2010
- 资助金额:
$ 39.63万 - 项目类别:
Quantitative Imaging to Assess Response in Cancer Therapy Trials
定量成像评估癌症治疗试验中的反应
- 批准号:
8964178 - 财政年份:2010
- 资助金额:
$ 39.63万 - 项目类别:
Quantitative Imaging to Assess Response in Cancer Therapy Trials
定量成像评估癌症治疗试验中的反应
- 批准号:
8034225 - 财政年份:2010
- 资助金额:
$ 39.63万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.63万 - 项目类别:
Research Grant














{{item.name}}会员




