Software to facilitate multimode, multiscale fused data for Pathology and Radiolo

用于促进病理学和放射学多模式、多尺度融合数据的软件

基本信息

  • 批准号:
    8192918
  • 负责人:
  • 金额:
    $ 63.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-17 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Medical informatics from the macro- to micro-scale is increasingly available for a range of detection/diagnosis/theragnostic applications tailored to each patient's history and current condition. Prostatic adenocarcinoma (CAP) is the second most common malignancy among men with an estimated 220,000 new cases in the USA in 2008. With the advent of multi-parametric high resolution (3 Tesla (T)) prostate MRI, providing anatomic, biochemical, and physiologic information, it has become increasingly important to identify the potential value of this information in pre-operative or pre-therapeutic CAP screening. However, in vivo prostate MRI lacks the resolution and ground truth diagnostic accuracy histopathological examination of biopsy cores provides. A first step toward getting prostate MRI for CAP into the clinic would be validating the information provided from MR at the cellular level. However, validating MRI against histological ground truth currently lacks the means to link the information provided by radiological imaging and pathology seamlessly. This is primarily due to a lack of interoperability between informatics representations and tools. One missing element, for instance, is robust and accurate image registration tools to align the multi-modal volumetric data sets. The overarching goal of this collaborative project between the University of Pennsylvania, Rutgers University, and Siemens Corporate Research is to develop and evaluate multi-modal image analysis and machine learning techniques within a software framework that will enable efficient analysis, correlation, and interpretation of multi-functional, multi-resolution patient data. The availability of these multi-modal, multi- scale analysis tools will enable alignment of radiology and pathological data which in turn will (a) enable building and validation of supervised computerized decision support systems for detection and grading of CAP from radiology and pathology data and (b) building meta-classifiers for CAP by integrating multi- modal, multi-scale disease signatures. Such a set of prostate-specific informatics tools promises clinical benefits including improved patient prognoses, more accurate disease diagnoses, and therapeutic recommendations. More generally, the tools developed as part of this project will also enable radiologic/pathologic studies in other disease entities. The specific goals of this project are 1) to develop cross-platform, open source, grid-enabled annotation, image analysis and image registration tools that will enable cross modality validation of radiology data (multi-functional 3 T prostate MRI) with expert histopathological annotation of prostatectomy specimens and provide independent computer-aided predictions of cancer extent and grade on radiology and histopathology, 2) curate an open source caGRID- connected database of prostate MRI and histopathological specimens that will enable development of quantitative signatures for detection and grading of CAP across multiple scales and imaging modalities. PUBLIC HEALTH RELEVANCE: The goal of this project is to develop a software tool kit (based on the XIP application from Siemens corporation) that will allow scientists to study prostate cancer by combining data from multiple imaging modalities (radiology and pathology) with molecular methodologies (including proteins, genes, epigenetic data). The results of this fused and combined data sets will allow scientists to create a more robust system based view of prostate cancer which allow prediction of diagnosis, follow outcomes of therapeutic treatment and facilitate discovery of new treatment options
描述(由申请人提供):从宏观到微观尺度的医学信息学越来越多地可用于针对每个患者的病史和当前状况量身定制的一系列检测/诊断/治疗诊断应用。前列腺癌 (CAP) 是男性中第二常见的恶性肿瘤,2008 年美国估计有 220,000 例新发病例。随着多参数高分辨率 (3 Tesla (T)) 前列腺 MRI 的出现,提供解剖、生化和生理信息,确定这些信息在术前或治疗前 CAP 中的潜在价值变得越来越重要 筛选。然而,体内前列腺 MRI 缺乏活检核心组织病理学检查所提供的分辨率和真实诊断准确性。将用于 CAP 的前列腺 MRI 纳入临床的第一步是在细胞水平上验证 MR 提供的信息。然而,根据组织学基本事实验证 MRI 目前缺乏将放射成像和病理学提供的信息无缝链接的方法。这主要是由于信息学表示和工具之间缺乏互操作性。例如,一个缺失的元素是强大而准确的图像配准工具,用于对齐多模态体积数据集。宾夕法尼亚大学、罗格斯大学和西门子研究中心合作项目的总体目标是在软件框架内开发和评估多模式图像分析和机器学习技术,从而实现多功能、多分辨率患者数据的高效分析、关联和解释。这些多模式、多尺度分析工具的可用性将能够协调放射学和病理学数据,这反过来又将(a)能够构建和验证监督计算机化决策支持系统,用于从放射学和病理学数据中检测和分级 CAP;(b)通过集成多模式、多尺度疾病特征来构建 CAP 元分类器。这样一套前列腺特异性信息学工具有望带来临床益处,包括改善患者预后、更准确的疾病诊断和治疗建议。更一般地说,作为该项目一部分开发的工具还将支持其他疾病实体的放射学/病理学研究。该项目的具体目标是 1) 开发跨平台、开源、支持网格的注释、图像分析和图像配准工具,使放射学数据(多功能 3 T 前列腺 MRI)与前列腺切除标本的专家组织病理学注释进行交叉模态验证,并提供放射学和组织病理学上癌症范围和分级的独立计算机辅助预测,2) 策划一个开源 caGRID- 前列腺 MRI 和组织病理学标本的连接数据库将能够开发定量特征,用于跨多种尺度和成像模式的 CAP 检测和分级。 公共健康相关性:该项目的目标是开发一个软件工具包(基于西门子公司的 XIP 应用程序),使科学家能够通过将多种成像模式(放射学和病理学)的数据与分子方法(包括蛋白质、基因、表观遗传数据)相结合来研究前列腺癌。这些融合和组合的数据集的结果将使科学家能够创建一个更强大的基于前列腺癌系统的视图,从而可以预测诊断、跟踪治疗结果并促进新治疗方案的发现

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL D FELDMAN其他文献

MICHAEL D FELDMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL D FELDMAN', 18)}}的其他基金

Computerized histologic image predictor of cancer outcome
癌症结果的计算机组织学图像预测器
  • 批准号:
    9305968
  • 财政年份:
    2016
  • 资助金额:
    $ 63.63万
  • 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
  • 批准号:
    8305155
  • 财政年份:
    2009
  • 资助金额:
    $ 63.63万
  • 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
  • 批准号:
    8512667
  • 财政年份:
    2009
  • 资助金额:
    $ 63.63万
  • 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
  • 批准号:
    7566209
  • 财政年份:
    2009
  • 资助金额:
    $ 63.63万
  • 项目类别:
ACC BioRepository
ACC生物样本库
  • 批准号:
    10550250
  • 财政年份:
    1997
  • 资助金额:
    $ 63.63万
  • 项目类别:
ACC BioRepository
ACC生物样本库
  • 批准号:
    10088758
  • 财政年份:
    1997
  • 资助金额:
    $ 63.63万
  • 项目类别:
ACC BioRepository
ACC生物样本库
  • 批准号:
    10330978
  • 财政年份:
    1997
  • 资助金额:
    $ 63.63万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.63万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 63.63万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 63.63万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 63.63万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 63.63万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 63.63万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 63.63万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 63.63万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 63.63万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 63.63万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了