Computerized histologic image predictor of cancer outcome
癌症结果的计算机组织学图像预测器
基本信息
- 批准号:9305968
- 负责人:
- 金额:$ 62.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdjuvantAdjuvant ChemotherapyAdoptionAgeAgreementAlgorithmsAppearanceArchitectureBehaviorBiological AssayBiological MarkersBiopsyBreastBreast Cancer PatientCancer DiagnosticsCellsClinicalClinical TrialsComputer AssistedComputer Vision SystemsComputer softwareComputersCountryCuesDataDevelopmentDiagnosisDiagnostic testsDiseaseDisease OutcomeDisease ProgressionDistantEarly DiagnosisEastern Cooperative Oncology GroupElementsEpigenetic ProcessEstrogen receptor positiveEuropeExcisionExhibitsGene ExpressionGene Expression ProfilingGene ProteinsGenetic HeterogeneityGenomicsGoalsGuidelinesHead CancerHealthHematoxylin and Eosin Staining MethodHistologicHistopathologyImageImage AnalysisIncidenceIncomeIndustrializationInterobserver VariabilityJointsMalignant NeoplasmsMalignant neoplasm of cervix uteriMalignant neoplasm of prostateMeasurementMolecularMorphologyMutationNational Surgical Adjuvant Breast and Bowel ProjectNeck CancerNuclearOperative Surgical ProceduresOutcomePathologicPathologistPathologyPatientsPerformancePhenotypePositive Lymph NodeProductionRandomized Clinical TrialsReadingRecurrenceRegulatory PathwayResearchResourcesReverse Transcriptase Polymerase Chain ReactionRiskRunningShapesSignal TransductionSlideSpecimenStaining methodStainsSumSystemTamoxifenTechniquesTechnologyTelepathologyTextureTimeTissue imagingTissuesTreatment outcomeTumor BiologyVisualWomanbasebehavioral responsecancer cellcancer imagingchemotherapycohortcompanion diagnosticscomputerizeddigitaldisorder riskhistological imagehistological specimenshormone therapyindustry partnermalignant breast neoplasmneoplastic celloutcome predictionprognostic assaysprototyperesponsetranslation assaytreatment responsetreatment strategytumortumor heterogeneity
项目摘要
SUMMARY: There is an increased need for predictive and prognostic assays to distinguish more and less
aggressive phenotypes of cancer due to A) dramatic increase in cancer incidence and; B) improvements in
early diagnosis. Predictive assays in particular will allow for patients with less aggressive disease to be spared
more aggressive treatment. Most prognostic tests in the US and Europe are based on gene expression assays
(e.g. Oncotype DX (ODx)). Recent studies have shown extensive genetic heterogeneity among cancer cells
between tumors and even within the same tumor, suggesting that approaches for recommending therapy for a
patient based on the “average” molecular signal of many cells are overly simplistic.
Interestingly, for a number of cancers, tumor grade (morphologic appearance on tissue as assessed
qualitatively or semi-quantitatively by a pathologist) has been found to be highly correlated with disease
outcome. However pathologic grade tends to suffer from significant inter-observer variability. Digitzation of
histological samples, or whole slide imaging, facilitates a quantitative approach towards evaluating disease
progression and predicting outcome, while also facilitating the adoption of telepathology. Recently, research
groups (including our own) have begun to show that computer extracted measurements of tumor morphology
(e.g. capturing nuclear orientation, texture, shape, architecture) from routine H&E stained cancer tissue images
can predict disease aggressiveness and treatment outcome. By computationally interrogating the entire tumor
landscape and its most invasive elements from a standard H&E slide, these approaches can allow for more
accurate capture of tumor heterogeneity, disease risk and hence the most appropriate treatment strategy.
The goal of this academic-industrial partnership is to develop and validate a computerized histologic
image-based predictor (CHIP) to identify which early-stage, estrogen receptor positive (ER+) breast cancer
patients are candidates for hormonal therapy alone and which women are candidates for adjuvant
chemotherapy based off analysis of the pathology slides derived from biopsy and surgical specimens. Inspirata
Inc., a cancer diagnostics company which has recently licensed a number of histomorphometry based
technologies from the Madabhushi group, will bring quality management systems and production software
standards to help create a pre-commercial companion diagnostic test of the CHIP assay. Additionally Inspirata
Inc. will build a complete regulatory pathway for successful translation of the assay in the US and abroad.
Finally, the pre-commercial prototype of the CHIP assay will be independently validated using the same
strategy and data cohorts as ODx. Our approach has several advantages over molecular assays such as ODx
in that it (1) can interrogate the entire expanse of the pathology image enabling a more accurate capture of
tumor heterogeneity and hence disease risk, (2) is non-disruptive of pathology workflow, (3) non-destructive of
tissue and would be substantially (4) cheaper (critical in low to middle income countries) and (5) faster.
摘要:越来越需要预测性和预测性分析来区分更多和更少
癌症侵袭性表型:A)癌症发病率显著增加;B)
早期诊断。尤其是预测性分析,将使侵袭性较弱的患者得以幸免。
更积极的治疗。美国和欧洲的大多数预后测试都是基于基因表达分析
(例如,Oncotype Dx(ODx))。最近的研究表明,癌细胞之间存在广泛的遗传异质性。
在肿瘤之间,甚至在同一肿瘤内,表明推荐治疗的方法
患者基于许多细胞的平均分子信号过于简单化。
有趣的是,对于一些癌症,肿瘤级别(评估的组织的形态外观
病理学家的定性或半定量)被发现与疾病高度相关
结果。然而,病理分级往往受到观察者间显着差异的影响。的数字化
组织学样本或整个玻片成像有助于定量评估疾病。
发展和预测结果,同时也促进了远程病理学的采用。最近,一项研究
研究小组(包括我们自己)已经开始表明,计算机提取的肿瘤形态测量
(例如,从常规H&E染色的癌组织图像中捕获核取向、纹理、形状、结构)
可以预测疾病的侵袭性和治疗结果。通过计算询问整个肿瘤
景观及其最具侵入性的元素来自标准的H&E幻灯片,这些方法可以实现更多
准确捕捉肿瘤异质性、疾病风险,从而获得最合适的治疗策略。
这种学术和产业合作的目标是开发和验证计算机化的组织学
基于图像的预测指标(芯片)用于识别雌激素受体阳性(ER+)的早期乳腺癌
患者是单独激素治疗的候选对象,哪些妇女是辅助治疗的候选对象
化疗是基于对活检和手术标本的病理切片进行分析。Inspirata
Inc.,一家癌症诊断公司,最近获得了许多基于组织形态计量学的
Madabhushi集团的技术将带来质量管理系统和生产软件
标准,以帮助创建芯片检测的商业化前配套诊断测试。此外,Inspirata
Inc.将为该检测在美国和国外的成功翻译建立一个完整的监管途径。
最后,芯片分析的预商业化原型将使用相同的
战略和数据队列作为ODx。与ODx等分子分析方法相比,我们的方法有几个优点
因为它(1)可以询问病理图像的整个范围,从而能够更准确地捕获
肿瘤异质性和疾病风险,(2)非破坏性的病理工作流程,(3)非破坏性的
而且将大大(4)便宜(在低收入和中等收入国家至关重要)和(5)更快。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(36)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL D FELDMAN其他文献
MICHAEL D FELDMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL D FELDMAN', 18)}}的其他基金
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
- 批准号:
8305155 - 财政年份:2009
- 资助金额:
$ 62.5万 - 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
- 批准号:
8512667 - 财政年份:2009
- 资助金额:
$ 62.5万 - 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
- 批准号:
7566209 - 财政年份:2009
- 资助金额:
$ 62.5万 - 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
- 批准号:
8192918 - 财政年份:2009
- 资助金额:
$ 62.5万 - 项目类别:
相似海外基金
3D Engineered Model of Microscopic Colorectal Cancer Liver Metastasis for Adjuvant Chemotherapy Screens
用于辅助化疗筛选的显微结直肠癌肝转移 3D 工程模型
- 批准号:
10556192 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Developing Digital Pathology Biomarkers for Response to Neoadjuvant and Adjuvant Chemotherapy in Breast Cancer
开发数字病理学生物标志物以应对乳腺癌新辅助和辅助化疗
- 批准号:
10315227 - 财政年份:2021
- 资助金额:
$ 62.5万 - 项目类别:
Circulating Tumour DNA Analysis Informing Adjuvant Chemotherapy in Stage III Colorectal Cancer: A Multicentre Phase II/III Randomised Controlled Trial (DYNAMIC-III)
循环肿瘤 DNA 分析为 III 期结直肠癌辅助化疗提供信息:多中心 II/III 期随机对照试验 (DYNAMIC-III)
- 批准号:
443988 - 财政年份:2021
- 资助金额:
$ 62.5万 - 项目类别:
Operating Grants
Establishment of new selection system for adjuvant chemotherapy of colorectal cancer
结直肠癌辅助化疗新选择体系的建立
- 批准号:
20K09011 - 财政年份:2020
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improved survival by Helicobacter pylori-modulated immunity in gastric cancer patients with adjuvant chemotherapy
幽门螺杆菌调节免疫力可改善接受辅助化疗的胃癌患者的生存率
- 批准号:
19K09130 - 财政年份:2019
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A new strategy of adjuvant chemotherapy for lung cancer based on the expression of anti-aging gene Klotho
基于抗衰老基因Klotho表达的肺癌辅助化疗新策略
- 批准号:
19K18225 - 财政年份:2019
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel candidate factors predicting the effect of S-1 adjuvant chemotherapy of pancreatic cancer
预测胰腺癌S-1辅助化疗效果的新候选因素
- 批准号:
18K16337 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Project 2-Metabolic Modulation of Myeloid-Derived Suppressor Cells to Increase Efficacy of Neo adjuvant Chemotherapy and Immunotherapy
项目2-骨髓源性抑制细胞的代谢调节以提高新辅助化疗和免疫疗法的疗效
- 批准号:
10005254 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Radiogenomic tools for prediction of breast cancer neo-adjuvant chemotherapy response from pre-treatment MRI
通过治疗前 MRI 预测乳腺癌新辅助化疗反应的放射基因组学工具
- 批准号:
9763320 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Analysis of the molecular mechanism for the prognostic biomarker of adjuvant chemotherapy
辅助化疗预后生物标志物的分子机制分析
- 批准号:
18K07341 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)